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Preface

“What are the electrons really doing in molecules?” This famous question
was posed by R. A. Mulliken over a half-century ago. Accurate quantitative
answers to this question would allow us, in principle, to know all there is
to know about the properties and interactions of molecules. Achieving this
goal, however, requires a very accurate solution of the quantum-mechanical
equations, primarily the Schrödinger equation, a task that was not possible
for most of the past half-century. This situation has now changed, primarily
due to the development of numerically accurate many-body methods and
the emergence of powerful supercomputers.

Today it is well known that the many-body instantaneous interactions of
the electrons in molecules tend to keep electrons apart; this is manifested as
a correlation of their motions. Hence a correct description of electron corre-
lation has been the focal point of atomic, molecular and solid state theory
for over 50 years. In the last two decades the most prominent methods
for providing accurate quantum chemical wave functions and using them to
describe molecular structure and spectra are many-body perturbation theory
(MBPT) and its coupled-cluster (CC) generalizations. These approaches
have become the methods of choice in quantum chemistry, owing to their
accuracy and their correct scaling with the number of electrons, a prop-
erty known as extensivity (or size-extensivity). This property distinguishes
many-body methods from the configuration-interaction (CI) tools that have
commonly been used for many years. However, maintaining extensivity – a
critical rationale for all such methods – requires many-body methods that
employ quite different mathematical tools for their development than those
that have been customary in quantum chemistry. In particular, diagram-
matic techniques are found to be extremely powerful, offering a unified,
transparent and precise approach to the derivation and implementation of
the relevant algebraic equations. For many readers, however, diagrammatic

xi



xii Preface

methods have seemed to be used arbitrarily, making it difficult to under-
stand with confidence the detailed one-to-one correspondence between the
diagrams and the various terms of the operable algebraic equations.

In order to address this situation, this book presents a unified, detailed
account of the highly popular MBPT and CC quantum mechanical methods.
It introduces direct, completely unambiguous procedures to derive all the
relevant algebraic equations diagrammatically, in one simple, easily applied
and unified approach. The ambiguity associated with some diagrammatic
approaches is completely eliminated. Furthermore, in order for a quantum-
chemical approach to be able to describe molecular structure, excited states
and properties derived from expectation values and from response methods,
new theory has had to be developed. This book also addresses the theory
for each of these topics, including the equation-of-motion CC (EOM-CC)
method for excited, ionized and electron attached states as well as the an-
alytical gradient theory for determining structure, vibrational spectra and
density matrices. Finally, the recent developments in multireference ap-
proaches, quasidegenerate perturbation theory (QDPT) and multireference
CC (MRCC), are also presented. All these equations are readily developed
from the same simple diagrammatic arguments used throughout the book.
With a modest investment of time and effort, this book will teach anyone to
understand and confidently derive the relevant algebraic equations for cur-
rent CC methods and even the new CC methods that are being introduced
regularly. Selected numerical illustrations are also presented to assess the
performance of the various approximations to MBPT and CC.

This book is directed at graduate students in quantum chemistry, chemical
physics, physical chemistry and atomic, molecular, solid-state and nuclear
physics. It can serve as a textbook for a two-semester course on many-body
methods for electronic structure and as a useful resource for university fac-
ulty and professional scientists. For this purpose, an extensive bibliography
and a detailed index are included. Useful introductory material for the book,
including detailed treatments of self-consistent field theory and configura-
tion interaction, can be found in parts of the book by Szabo and Ostlund
(1982). Additional useful sources include, among others, the monograph
by Lindgren and Morrison (1986), which emphasizes atomic structure and
includes the treatment of angular momentum and spin coupling, and the
book focusing on diagrammatic many-body methods by Harris, Monkhorst
and Freeman (1992). An interesting historical account of the development
of coupled-cluster theory was provided by Paldus (2005), whose unpublished
(but widely distributed) Nijmegen lectures introduced many researchers to
this methodology.
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Introduction

1.1 Scope

The book focuses primarily on many-body (or better, many-electron) meth-
ods for electron correlation. These include Rayleigh–Schrödinger pertur-
bation theory (RSPT), particularly in its diagrammatic representation (re-
ferred to as many-body perturbation theory, or MBPT ), and coupled-cluster
(CC) theory; their relationship to configuration interaction (CI) is included.
Further extensions address properties other than the energy, and also excited
states and multireference CC and MBPT methods.

The many-body algebraic and diagrammatic methods used in electronic
structure theory have their origin in quantum field theory and in the study
of nuclear matter and nuclear structure. The second-quantization formal-
ism was first introduced in a treatment of quantized fields by Dirac (1927)
and was extended to fermion systems by Jordan and Klein (1927) and by
Jordan and Wigner (1928). This formalism is particularly useful in field
theory, in scattering problems and in the study of infinite systems because
it easily handles problems involving infinite, indefinite or variable numbers
of particles. The diagrammatic approach was introduced into field theory
by Feynman (1949a,b) and applied to many-body systems by Hugenholtz
(1957) and by Goldstone (1957). Many-body perturbation theory and its
linked-diagram formalism were first introduced by Brueckner and Levinson
(1955) and by Brueckner (1955), and were formalized by Goldstone (1957).
Other important contributions to the methodology, first in field theory and
then in the theory of nuclear structure, are due to Dyson (1949a,b), Wick
(1950), Hubbard (1957, 1958a,b) and Frantz and Mills (1960). Applications
to the electronic structure of atoms and molecules began with the work
of Kelly (1963, 1964a,b, 1968), and molecular applications using finite an-
alytical basis sets appeared in the work of Bartlett and Silver (1974a,b).
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2 Introduction

More complete accounts of the history of these methods have been given by
Lindgren and Morrison (1986) and by Lindgren (1998).

The coupled-cluster method also has origins in nuclear structure theory,
with the seminal papers of Coester (1958) and Coester and Kümmel (1960).
It was introduced to electronic structure theory and formalized by Č́ıžek
(1966, 1969) and Č́ıžek and Paldus (1971). A historical account of its origins
and development was given by Paldus (2005).

Additional references to the development and extensions of the many-body
methods are given in the relevant chapters.

The rest of this chapter provides some background material, including
a brief discussion of the independent-particle model and the configuration-
interaction method. We discuss the limitations of these methods and the
need for the perturbation-theoretical and many-body methods that form the
subject of the rest of this book. We also provide a preliminary introduction
to the cluster ideas that form the basis of coupled-cluster theory. Readers
in need of a more extensive introduction are referred to the excellent book
by Szabo and Ostlund (1982).

A detailed exposition of formal perturbation theory is given in Chapter 2.
A number of different derivations and approaches are included in this ex-
position in order to provide a broad foundation for the terminology and
techniques employed in this field. The many-body technique of second quan-
tization is introduced in Chapter 3, and the diagrammatic representation is
described in Chapter 4. The application of the many-body and diagram-
matic techniques to perturbation theory is described in Chapter 5, and this
is followed by proof of the crucial linked-diagram theorem in Chapter 6 and a
discussion of some practical aspects of many-body perturbation-theory cal-
culations in Chapter 7. Open-shell and quasidegenerate perturbation theory
is presented in Chapter 8. Coupled-cluster theory is discussed in Chapters 9
and 10, again including several forms of the derivations in order to pro-
vide better understanding. The calculation of properties in the coupled-
cluster method is described in Chapter 11. Several additional aspects of
coupled-cluster theory are discussed in Chapter 12, and the equation-of-
motion (EOM) coupled-cluster method for excited-state calculations is de-
scribed in Chapter 13. Finally, multireference coupled-cluster methods are
presented in Chapter 14.

1.2 Conventions and notation

Throughout this book we use atomic units, setting m = e = � = 1 where m

and −e are the mass and charge of the electron and � = h/2π is Planck’s
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Table 1.1. Terminology for excitation levels

Level Symbol Name Alternative

1 S singles mono-excited
2 D doubles bi-excited
3 T triples tri-excited
4 Q quadruples tetra-excited
5 P pentuples penta-excited
6 H hextuples hexa-excited

constant. As is customary in quantum chemistry, these constants are omit-
ted from the expressions in this book but their implied presence is needed
for proper dimensionality.

With a few exceptions, lower-case letters (a, b, . . . , φ, ψ, . . . , etc.) are used
for one- and two-particle entities, and upper-case letters (A, B, . . . ,Φ, Ψ, . . . ,

etc.) are used for many-particle entities. Operators are designated by a caret
over a roman letter (â, î, F̂ , Ĥ, etc.), by a script upper-case letter (H,P,
etc.) or by an Greek upper-case letter (Λ, Ω, etc.). Vectors and matrices are
represented by boldface lower- and upper-case letters, respectively.

The acronyms used to specify excitation-level combinations included in
the different computational models have evolved, first in configuration
interaction (CI) and then in coupled-cluster (CC) theory, using a mixture of
English, Greek and Latin roots, in view of the need to provide a unique ini-
tial letter for each level, as listed in Table 1.1. For example, a CI calculation
that includes all single, double and triple excitations is described as CISDT.
The fourth column in Table 1.1 lists some alternative excitation-level names
that have been used.

1.3 The independent-particle approximation

In this section we briefly summarize several aspects of the procedures used to
obtain starting approximations for correlated molecular electronic structure
calculations. For more complete discussions and detailed derivations the
reader is referred to other sources, such as Szabo and Ostlund (1982) or
standard textbooks.

Most electronic structure calculations begin with a relatively simple ap-
proximation based on the independent-particle model. The wave function
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for such a model is a single Slater determinant (SD),

Φ =
1√
N !

∣∣∣∣∣∣∣∣∣

ψ1(1) ψ2(1) · · · ψN (1)
ψ1(2) ψ2(2) · · · ψN (2)

...
...

. . .
...

ψ1(N) ψ2(N) · · · ψN (N)

∣∣∣∣∣∣∣∣∣
= Aψ1ψ2 . . . ψN , (1.1)

where ψi(µ) is a spinorbital, a function of the space and spin coordinates
of the µth electron (typically a product of a spatial orbital and a spin func-
tion), and A is the antisymmetrizer. The most commonly used independent-
particle model is the Hartree–Fock (HF) or self-consistent field (SCF) wave
function,† in which the spinorbitals are varied to minimize the energy expec-
tation value of the single-determinant wave function. The minimization can
be achieved by solving a set of coupled one-electron eigenvalue equations for
the spinorbitals,

f̂ψi = εiψi , (1.2)

in which the Fock operator f̂ depends on all the spinorbitals (this depen-
dence is given explicitly later in this section). Iterative procedures are re-
quired to obtain consistency between the spinorbitals used to define f̂ and
the spinorbitals obtained as its eigenfunctions.

Because a determinant is invariant to unitary transformations of its col-
umns or rows, the SD wave function (1.1) is invariant under unitary transfor-
mations of the occupied spinorbitals {ψi, i = 1, 2, . . . , N} among themselves.
Therefore, any unitary transformation of the occupied spinorbitals provides
an alternative representation of the same SD wave function. The particular
representation of the wave function in which the spinorbitals are solutions
of (1.2), i.e., are eigenfunctions of f̂ (so that the matrix representation of
f̂ in terms of these spinorbitals is diagonal, 〈ψi|f̂ |ψj〉 = εiδij), is called
the canonical HF wave function; the corresponding spinorbitals (including

† It was common to distinguish between the original type of Hartree–Fock solution, which
achieves the absolute minimum of the energy of an SD wave function (1.1) with respect to
any variation of the spinorbitals (subject only to appropriate restrictions in the restricted HF
case) and usually require numerical (finite difference) methods of solution as employed by
Hartree and others for atomic wave functions, and the self-consistent field form (also known
as Hartree–Fock–Roothaan or matrix Hartree–Fock), in which the spinorbitals are expanded
in a basis set and the lowest energy solution within the space generated by that basis set is
sought. This second approach converts the operator eigenvalue equation (1.2) to a matrix
eigenvalue equation for the eigenvectors of expansion coefficients. The HF solution is thus the
limiting result (the HF limit) of the self-consistent field procedure as the basis set approaches
completeness. In current usage, however, the distinction has unfortunately been lost, and the
terms Hartree–Fock and self-consistent field are used interchangeably, both commonly referring
to the basis-set expansion approach. We shall follow this practice in this book.
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the unoccupied or virtual spinorbitals obtained as additional eigenfunctions
of f̂ that are not used in the SD wave function) are the canonical spinor-
bitals. All other representations of the HF solution are called noncanonical
and produce a block-diagonal matrix representation of f̂ with two inter-
nally non-diagonal blocks representing the occupied and virtual spinorbital
spaces, respectively. The orbital energies εi, which are the eigenfunctions of
f̂ , are invariant under unitary transformations but are associated one-to-one
with the canonical spinorbitals only.

The degree of freedom provided by the invariance of the HF wave function
under unitary transformations of the occupied spinorbitals (and, separately,
of the unoccupied spinorbitals) is sometimes used to transform the spinor-
bitals to a localized form, in which the individual spinorbitals are localized
to the regions of individual atoms or bonds. Such localized forms of the
solution often offer advantages of simpler interpretation and provide a basis
for more compact descriptions of correlated wave functions.

Several variants of the Hartree–Fock approach are in common use; these
are defined by the restrictions, if any, that are placed on the spinorbitals
{ψi}. In the usual form of the unrestricted Hartree–Fock (UHF) model
there are no restrictions other than that each spinorbital is a product of a
spatial orbital and a spin-up (α) or spin-down (β) spin function. This form
is often used for open-shell states and sometimes for the description of bond
dissociation. The most common restriction constrains pairs of spinorbitals to
share the same spatial orbital, leading to the restricted Hartree–Fock (RHF)
model in which each spatial orbital can accommodate at most two electrons.
The RHF model is most commonly used for closed-shell molecules near their
equilibrium geometry. When applied to open-shell cases, in which one or
more spinorbitals are unpaired, it is often referred to as restricted open-shell
Hartree–Fock (ROHF). For closed-shell molecules near their equilibrium ge-
ometry the UHF and RHF solutions are generally equivalent and produce
the same set of doubly occupied spatial orbitals.†

Independently of whether spin restrictions are used, restrictions can be
placed on the symmetry properties of the spatial orbitals requiring them
to belong to irreducible representations (irreps) of the point group of the
molecule. Such restrictions can often cause difficulties in the descriptions
of potential-energy surfaces, when symmetry-restricted solutions at high-
symmetry points may be higher in energy than symmetry-unrestricted solu-
tions at the same points (a phenomenon referred to as symmetry breaking)

† Except where stated explicitly otherwise, the treatment in this book is in terms of unrestricted
spinorbitals, and the terms orbitals and Hartree–Fock (or SCF) generally refer to spinorbitals
and UHF.
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and thus do not connect continuously with the solutions for distorted (lower-
symmetry) structures.

In most cases, a Hartree–Fock solution provides an excellent initial ap-
proximation for the electronic wave function and energy of a molecular sys-
tem, often accounting for more than 99% of the total electronic energy and
95% of the wave function. Nevertheless, because the energy differences of in-
terest in chemical and spectroscopic processes are a fraction of one percent of
the total electronic energy and because the accuracy of the HF model tends
to vary considerably between different structures and different electronic
states, this model does not usually provide adequately accurate solutions
by itself. In most cases, though, it provides a satisfactory zero-order solu-
tion that can then be used as the starting point for the post-Hartree–Fock
methods discussed in this book. There are however cases in which HF does
not provide an adequate zero-order function; these are due primarily to near
degeneracies between several Slater-determinantal contributions to the wave
function. In such cases a multideterminantal (“multiconfigurational”) func-
tion can provide a better zero-order wave function. The multiconfigurational
Hartree–Fock (MCHF) model, also referred to as multiconfigurational SCF
(MCSCF), can be particularly effective in providing good zero-order solu-
tions in such cases, but the use of such multiconfigurational zero-order func-
tions requires multireference methods in the post-HF stage and introduces
additional complications for the many-body methods that are the principal
topic of this book.

It is instructive to consider an alternative derivation of the Hartree–Fock
model that provides physical insight into the reasons for its success and
introduces some important concepts. We shall do this in terms of the un-
restricted model, because of its generality and its relatively simple nota-
tion. Instead of invoking the variational principle and minimizing the en-
ergy of a single-determinant wave function with respect to the spinorbitals,
the same Fock equation (1.2) can be obtained by a physically motivated
argument.

The difficulty in the solution of the electronic Schrödinger equation is prin-
cipally due to the interelectron repulsion terms 1/rµν in the Hamiltonian.
Those terms couple the motions of the different electrons and prevent sepa-
ration of the equation into individual one-electron equations. It is therefore
natural to seek an approximate solution in which the instantaneous inter-
electron interaction terms are replaced by averaged interactions, describing
the motion of each electron in the time-averaged field of the other electrons.
The averaged interaction energy of an electron in spinorbital ψi, when the
total electron distribution is described by the single-SD wave function (1.1),
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is obtained as

〈ψi|û|ψi〉 =
N∑

j (j �=i)

〈
ψi(1)ψj(2)

∣∣∣ 1
r12

∣∣∣ψi(1)ψj(2) − ψj(1)ψi(2)
〉

=
N∑

j=1

〈ψi(1)|Ĵj − K̂j |ψi(1)〉 , (1.3)

where the restriction on the summation in the first line can be ignored be-
cause of the cancellation between the first (Coulomb or direct) term and the
second (exchange) term when i = j. The Coulomb and exchange operators
are defined by

Ĵi(1)φ(1) =
〈
ψi(2)

∣∣∣ 1
r12

∣∣∣ψi(2)
〉
2
φ(1) ,

K̂i(1)φ(1) =
〈
ψi(2)

∣∣∣ 1
r12

∣∣∣φ(2)
〉
2
ψi(1) ,

(1.4)

the integration being over the coordinates of electron 2 only. With the
replacement of the instantaneous electron repulsion by the average form,
the Schrödinger equation becomes separable, the equation for each electron
takes the form (1.2) and the Fock operator is given by

f̂ = ĥ +
N∑

i=1

(Ĵi − K̂i) , (1.5)

where ĥ is the one-electron operator in the Hamiltonian. Because of the can-
cellation of the Coulomb and exchange terms in (1.3) when i = j, and thus
the removal of the restriction on the summation, the Fock operators for all
the spinorbitals are equal and we have only one eigenvalue equation for the
spinorbitals, with the different spinorbitals obtained as different eigenfunc-
tions of that operator. The iterative and coupled nature of the equations is
due to the dependence of the Coulomb and exchange operators on all the
occupied orbitals.

The average-interaction approach leads to exactly the same equations as
the energy-minimization approach and serves to provide a physical rationale
for the Hartree–Fock model. It also provides the basis for defining the
concept of electron correlation, as discussed in the next section.

1.4 Electron correlation

The purpose of all many-body methods is to describe electron correlation,
defined as representing the difference between the Hartree–Fock description
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of the electronic wave function and the exact solution of the nonrelativis-
tic time-independent Schrödinger equation (Löwdin 1959, Kutzelnigg 2003).
(Note that this definition is not necessarily unique, because of the different
types of Hartree–Fock model that can be used as the reference point.) We
are interested in the correlation correction to the energy, called the correla-
tion energy ,

∆Ecorr = Eexact − EHF (1.6)

(where EHF implies the exact solution of the Hartree–Fock problem, i.e.,
in an infinite, complete, basis set), and also in the correction to the wave
function,

Ψexact = ΦHF + χcorr , (1.7)

which determines the electron density and all other properties of molecules.
The naming of the correlation correction reflects the fact that the Hartree–

Fock model describes the motion of the electrons in the average field of
the other electrons, neglecting the instantaneous correlation in the mo-
tions of the electrons due to their mutual repulsion. However, this dy-
namic effect is not the only type of error in the Hartree–Fock model. In
many cases, especially for excited states and other open-shell states and
even for ground-state closed-shell molecules when bonds are stretched to
near breaking (if the RHF model is used as the reference), near degenera-
cies between single-configuration descriptions cause the single-configuration
Hartree–Fock model to be deficient even as a zero-order approximation for
the wave function and energy. Therefore we distinguish between the two
components of the correlation effect: dynamic correlation, reflecting the in-
stantaneous correlation in electron motions due to their mutual repulsion,
and nondynamic correlation, reflecting the effect of near degeneracies and
other substantial inadequacies of the single-configuration model. While it is
difficult to provide a quantitative separation between these two components
of the correlation error, the understanding provided by these concepts is
important in designing methods for obtaining satisfactory solutions of the
Schrödinger equation.

The two components of the correlation error respond best to two different
types of treatment. Nondynamic correlation is handled most efficiently by
using a multiconfigurational zero-order description such as multiconfigura-
tional SCF (MCSCF). Dynamical correlation is handled efficiently by the
perturbation methods and coupled cluster approaches described in the rest
of this book. Unfortunately, unlike the situation in the configuration inter-
action model, the multireference extension of the perturbation and coupled-
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cluster models is quite difficult, and general methods for this type of ap-
proach are still not widely available. Nevertheless, single-reference coupled-
cluster theory, when carried to a high enough level, has proved to be capable
of overcoming the nondynamic correlation problem to a considerable extent.

1.5 Configuration interaction

The simplest approach to treating electron correlation is by the configuration-
interaction (CI) method. If we start with the self-consistent field (SCF)
wave function and orbitals (the Hartree–Fock solution limited to the space
spanned by a given basis set), we can write the CI expansion of an N -electron
wave function in the (unnormalized) form

Ψ = ΦSCF +
∑
i,a

Ca
i Φa

i +
∑

i<j, a<b

Cab
ij Φab

ij + · · · (up to N excitations),

(1.8)

where Φa
i is a singly excited configuration in which an occupied orbital φi

of the SCF wave function has been replaced by a virtual orbital φa (an
orbital not occupied in the SCF function, which can also be chosen to be an
eigenfunction of the Fock operator, f̂φa = εaφa), Φab

ij is a double-excitation
configuration etc.

If m is the number of SCF occupied orbitals and n is the number of virtual
orbitals (m + n equals the number of basis functions) then the number of
k-fold excited configurations is O(mknk) (as long as k � m). This number
grows very rapidly with k, so that a complete solution is impractical and the
CI expansion needs to be truncated. Usually the truncation is made after
the double-excitation level, producing CISD, i.e. CI with single (S) and
double (D) excitations. Because ΦSCF is (usually) a reasonable starting
approximation to Ψ and because the Hamiltonian Ĥ has no more than
two-electron operators (so that 〈ΦSCF|Ĥ|Φab...

ij... 〉 = 0 for higher than double
excitations), this represents a reasonable approximation in most cases.

The contribution of single excitations to a CI expansion (1.8) based on
an SCF function (unrestricted or closed-shell restricted) as the initial term
is quite small. This is due to the Brillouin theorem, which states that
the Hamiltonian matrix element between the SCF function and a single
excitation vanishes,

〈ΦSCF|Ĥ|Φa
i 〉 = 0 . (1.9)

This theorem holds for both canonical and noncanonical forms of the SCF
function and is a consequence of the block-diagonal nature of the Fock oper-
ator f̂ (Section 1.3) given by fia = 〈ΦSCF|Ĥ|Φa

i 〉 = 0 (see Chapter 3). As a
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consequence of the Brillouin theorem, a CI expansion with single excitations
only (CIS) based on an unrestricted or closed-shell restricted SCF function
provides no improvement over SCF. It is only through the interaction of the
single excitations with the doubles (and, to a much smaller extent, triples)
that the singles acquire nonzero coefficients Ca

i in the expansion. These
arguments do not apply to the restricted open-shell SCF (ROHF) case, for
which the f̂ matrix is not block diagonal, the Brillouin theorem does not
hold, and a CIS wave function can provide a useful improvement over SCF.

The contribution of single excitations to the CI expansion (as well as to
perturbation expansions and coupled-cluster wave functions) can be elim-
inated completely by a suitable transformation of the orbitals. Such a
transformation involves some mixing of occupied and virtual orbitals and
therefore the initial term in the transformed expansion is no longer exactly
equivalent to the SCF function. The resulting orbitals are called Brueckner
orbitals and can be obtained by an iterative procedure in which, in each
iteration, pairs of occupied and virtual orbitals are mixed to eliminate the
corresponding single-excitation contributions in first order. This process
must be applied to an expansion that includes at least double excitations,
because it is the interaction of the single excitations with the doubles that
is responsible for almost all of the contribution of the single excitations to
the expansion.

Natural orbitals (NOs) are very similar to Brueckner orbitals; they are
obtained by transforming the orbitals so as to diagonalize the one-particle
density matrix of the correlated wave function. For two-electron systems,
the natural orbitals are the same as the Brueckner orbitals, making it rela-
tively easy to eliminate single excitations from correlated two-electron wave
functions. In natural-orbital-based expansions for systems of more than two
electrons the contribution of single excitations tends to be very small, in
fact much smaller than even the small contributions in the SCF case.

The exact solution, within the given basis set, is obtained by using all
terms of the CI expansion, up to N excitations. This is called full CI and
is invariant under any linear transformation of the orbitals.

1.6 Motivation

The motivation for studying perturbation theory (PT) and other many-body
(MB) techniques comes from the following principal sources.

1. Unlike truncated CI, most PT formulations provide properly exten-
sive descriptions. These concepts are discussed in Section 1.7; briefly,
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a method is extensive if the energy of a system computed by this
method scales correctly with system size. An example illustrating
the lack of extensivity of truncated CI is presented in Section 1.7.

2. Perturbation theory formulations can incorporate the most impor-
tant higher-excitation effects at a relatively low order (e.g., they can
combine the most important quadruple-excitation contributions with
the double excitations), but by leaving out the relatively unimportant
parts of these higher excitations they avoid the labor that would be
required if we tried to include these higher-excitation effects in full,
as we would have to do in CI, which cannot separate these different
components of the higher excitations.

3. Systematic diagrammatic techniques allow high-efficiency organiza-
tion of the calculations. This aspect is closely related to point 2
above and allows, in principle, improved results, at comparable levels
of effort, compared with CI.

There also are disadvantages of such methods.

1. The PT and related MB techniques are generally nonvariational, so
that we have no bounds on the energy.

2. The PT series does not always converge and thus cannot be applied in
certain situations, and in many other cases convergence can be slow.
These problems can be circumvented in some cases by reorganization
of the series, including the summation of some types of term to infinite
order; this is done, for example, in coupled-cluster (CC) methods.
Alternatively, these convergence problems can be circumvented by
going to a multireference (MR) version such as QDPT or MRCC
but, as we shall see, this introduces additional complications.

1.7 Extensivity

In thermodynamics, a system property is called extensive if its value for
a uniformly distributed system is proportional to the size of the system.
A quantum-mechanical model is said to be extensive (commonly, although
redundantly, size-extensive) if the energy of a system computed with this
model scales correctly with the size of the system (Bartlett and Purvis 1978,
Bartlett 1981). This property is most easily understood for a system such
as a uniform electron gas or a system of noninteracting unis, such as N
He atoms, for which E(NHe) = NE(He). For arbitrary systems a precise
definition is more difficult (Nooijen, Shamasundar and Mukherjee 2005) and
will be dealt with more fully in Sections 5.10 and 9.2.1.
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A closely related concept is that of size-consistency . As defined by Pople,
Binkley and Seeger (1976), a model is size-consistent if the energies of two
systems A and B and of the combined system AB with A and B very far
apart, computed in equivalent ways, satisfy

E(AB) = E(A) + E(B) . (1.10)

These two properties of the computed energy are not quite the same,
but in many cases they go hand-in-hand. We shall discuss this question
in more detail later, but now we use a simple example to demonstrate the
lack of extensivity of truncated CI. We shall consider a model system of N

noninteracting He atoms (or, equivalently, N H2 molecules) as examples of
electron-pair bonds and examine the behavior of the energy as a function of
N (Sasaki 1977, Davidson and Silver 1977).

First we shall examine the case of one He atom with Hamiltonian ĥ, wave
function ψ and energy ε, for which

ĥψ = εψ . (1.11)

Since this is a two-electron system, its exact wave function can be written in
terms of natural orbitals as a linear combination of a reference function φ0

and all double excitations relative to it, without single-excitation terms (see
Section 1.5). Let us express the wave function in the unnormalized form

ψ = φ0 + cχ , (1.12)

where

〈φ0|φ0〉 = 1 ,

〈χ|χ〉 = 1 ,

〈φ0|χ〉 = 0

(1.13)

(intermediate normalization), and χ is the appropriate normalized aggregate
of all double excitations relative to φ0; alternatively, we could consider a
calculation within the space spanned by just two basis functions, in which
case χ would be the only double-excitation configuration. The elements of
the corresponding Hamiltonian matrix will be written in the form

〈φ0|ĥ|φ0〉 = ε0 ,

〈φ0|ĥ|χ〉 = β ,

〈χ|ĥ|χ〉 = α ,

(1.14)
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and the CI eigenvalue equation is(
ε0 β

β∗ α

) (
1
c

)
= ε

(
1
c

)
, (1.15)

which can be solved for the exact energy ε and the coefficient c. The first
equation in the 2 × 2 system is

ε0 + βc = ε , ∆ε ≡ ε − ε0 = βc . (1.16)

The second equation is

β∗ + αc = εc ,
β∗

c
= ε − α = ε0 + ∆ε − α . (1.17)

Substituting c = ∆ε/β from the first equation gives

|β|2
∆ε

= ε0 + ∆ε − α , ∆ε2 − (α − ε0)∆ε − |β|2 = 0 , (1.18)

which is a quadratic equation for the correlation energy ∆ε.
Now consider a system of N noninteracting He atoms, with Hamiltonian

Ĥ =
N∑

i=1

ĥ(i) , (1.19)

where ĥ(i) is the Hamiltonian for the ith atom. The reference function can
be written

Φ0 = Aφ0(1)φ0(2) · · ·φ0(N) , (1.20)

where the arguments 1, 2, . . . , N identify the atoms. The antisymmetrizer
A exchanges electrons between different two-electron factors φ0; because of
the lack of interaction, it can actually be ignored. The double-excitation
functions are of the form

Φi = Aφ0(1)φ0(2) · · ·φ0(i − 1)χ(i)φ0(i + 1) · · ·φ0(N) . (1.21)

(We do not need to consider mixed double excitations, or single excitations,
because of the lack of interaction among the atoms and between φ0 and any
single excitation from it.) The CI doubles (CID) wave function is then

ΨCID = Φ0 +
N∑

i=1

CiΦi (1.22)
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(it is unnormalized, and all the Ci = C are equal by symmetry). We obtain
the following matrix elements:

〈Φ0|Φ0〉 = 1 ,

〈Φ0|Φi〉 = 0 ,

〈Φi|Φj〉 = δij ,

〈Φ0|Ĥ|Φ0〉 = Nε0 = E0 ,

〈Φ0|Ĥ|Φi〉 = 〈φ0|ĥ|χ〉 = β ,

〈Φi|Ĥ|Φj〉 = δij [(N − 1)ε0 + α]

= δij(E0 + α − ε0) .

(1.23)

The CI equations are given by


E0 β β . . . β

β∗ E0 + α − ε0 0 . . . 0
β∗ 0 E0 + α − ε0 . . . 0
...

...
...

. . .
...

β∗ 0 0 . . . E0 + α − ε0







1
C

C
...
C


 = E




1
C

C
...
C


 .

(1.24)
From the first equation we get

E0 + NβC = E

or

∆E ≡ E − E0 = NβC . (1.25)

From the other (equivalent) equations we get

β∗ + (E0 + α − ε0)C = EC

or
β∗

C
= ε0 + ∆E − α . (1.26)

Substituting C = ∆E/Nβ from (1.25) gives

N |β|2
∆E

= ε0 + ∆E − α ,

∆E2 − (α − ε0)∆E − N |β|2 = 0 . (1.27)

Equation (1.27) is quadratic in the correlation energy ∆E, with solution

∆E =
α − ε0

2
±

√(
α − ε0

2

)2

+ N |β|2 . (1.28)
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The behavior of ∆E as N → ∞ is then found to be

∆E −→
N→∞

−|β|
√

N =
∆ε

|c|
√

N (1.29)

(using ∆ε = βc from (1.16)), instead of the correct answer ∆E = N∆ε.
Therefore this truncated CI expansion is not extensive.

Of course, in this case we know the correct answer. If we define

Φij = Aφ0(1) · · ·φ0(i − 1)χ(i)φ0(i + 1) · · ·φ0(j − 1)χ(j)φ0(j + 1) · · ·φ0(N)
(1.30)

etc. then

Ψ = Aψ(1)ψ(2) · · ·ψ(N)

= A[φ0(1) + cχ(1)][φ0(2) + cχ(2)] · · · [φ0(N) + cχ(N)]

= Φ0 +
N∑

i=1

cΦi +
∑
i<j

c2Φij + · · · + cNΦ123...N ,

(1.31)

which can also be written as

Ψ = Φ0 +
∑

i

cΦi + 1
2

∑
i,j

c2Φij + 1
3!

∑
i,j,k

c3Φijk + · · · (1.32)

Thus the coefficients of the higher than double excitations are not indepen-
dent parameters but are closely related to the coefficients of the doubles.
Obviously, the larger the system becomes the poorer will be the truncated
CI expansion ΨCID. The relative contributions to |Ψ|2 of different excitation
levels are:

zero excitations, 1;

doubles, Nc2;

quadruples, 1
2N(N − 1)c4 ∼ 1

2N2c4;

sextuples, 1
3!N(N − 1)(N − 2)c6 ∼ 1

6N3c6;

(1.33)

etc. No matter how small c2 is, if N is large enough then the higher-
excitation contributions eventually become dominant. We shall return to
this example in the discussions of other computational models.

1.8 Disconnected clusters and extensivity

The N -He-atoms example provides a simple explanation of the lack of ex-
tensivity of CID in terms of separated pairs (disconnected clusters). As
previously stated, the coefficients of the higher-excitation configurations
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(quadruples, sextuples, etc.) in this example are not independent param-
eters, so that if we knew the correct double-excitation coefficients c, i.e.
those obtained from a full CI calculation, not from CID, we would know
the complete wave function and would be able to obtain the exact energy.
While a double-excitation configuration represents the correlation of a pair
of electrons (a two-electron cluster), a quadruple excitation represents the
correlation of four electrons at a time, etc. But the four-electron correla-
tions in this example really represent two separate two-electron correlations
occurring simultaneously. This type of four-electron cluster is called a dis-
connected cluster, being made up of two simultaneous but independent two-
electron clusters. In the language of coupled-cluster theory, the two-electron
clusters are represented by an operator T̂2 corresponding to a linear com-
bination of double-excitation operators and the higher-order disconnected
clusters are represented by products of connected-cluster operators, such as
1
2 T̂ 2

2 for disconnected quadruple excitations, obtained from the expansion of
an exponential operator eT̂ (where T̂ may be limited to T̂2 or may contain
additional connected-cluster operators T̂1 , T̂3 etc.).

If we bring the N He atoms closer and let them interact, the full CI wave
function will no longer be represented exactly as a product of one-atom wave
functions

(1 + T̂2 + 1
2! T̂

2
2 + 1

3! T̂
3

2 + · · · )Φ0 = eT̂2Φ0 (1.34)

equivalent to the expansion (1.32); it will have additional connected clus-
ter contributions T̂1, T̂3, T̂4, . . . as well as additional disconnected cluster
contributions 1

2 T̂ 2
1 , T̂1T̂2, T̂1T̂3, T̂2T̂3, 1

3! T̂
3

1 , 1
2 T̂ 2

1 T̂2, . . . , obtained from the
expansion of eT̂ (where T̂ = T̂1 + T̂2 + · · · ). The CI quadruple excitation
contribution is represented by the operator

Ĉ4 = T̂4 + 1
2 T̂ 2

2 + 1
4! T̂

4
1 + T̂1T̂3 + 1

2 T̂ 2
1 T̂2 . (1.35)

In the noninteracting case 1
2 T̂ 2

2 is the only contribution to Ĉ4, but even in
the interacting case it will still be by far the most important. In fact, the
order of importance, based upon the order of PT in which the contribution
first appears (for an SCF reference state), is generally

T̂2,
1
2 T̂ 2

2 , T̂1, T̂3,
1
3! T̂

3
2 , T̂4, . . . (1.36)
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In CI we cannot compute the individual components of (1.35) separately
but in PT and CC we can, and T̂ 2

2 is much easier to compute than T̂4. Thus
we can obtain the major effect of the quadruple excitations 1

2 T̂ 2
2 more easily

in PT and CC, because in these methods it is not combined with the much
more difficult T̂4. Furthermore, it is the disconnected clusters that are the
key for extensivity (as is clear from the N -He-atoms example).
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Formal perturbation theory

2.1 Background

There are two stages in the study of perturbation theory and related tech-
niques (although they are mixed intimately in most derivations in the lit-
erature). The first is the formal development, carried out in terms of the
total Hamiltonian and total wave function (and total zero-order wave func-
tion), without attempt to express anything in terms of one- and two-body
quantities (components of Ĥ, orbitals, integrals over orbitals etc.). We can
make a considerable amount of progress in this way before considering the
detailed form of Ĥ. The second is the many-body development, where all
expressions are obtained in terms of orbitals (one-electron states) and one-
and two-electron integrals. We shall try to keep these separate for a while
and begin with a consideration of formal perturbation theory.

Another aspect of the study of many-body techniques is the large variety
of approaches, notations and derivations that have been used. Each different
approach has contributed to the lore and the language of many-body theory,
and each tends to illuminate some aspects better than the other approaches.
If we want to be able to read the literature in this field, we should be familiar
with several alternative formulations. Therefore, we shall occasionally derive
some results in more than one way and, in particular, we shall derive the
basic perturbation-theory equations and their many-body representations in
several complementary ways.

2.2 Classical derivation of Rayleigh–Schrödinger perturbation
theory

2.2.1 The perturbation Ansatz

We begin with a classical textbook derivation of formal Rayleigh–Schrödinger
perturbation theory (RSPT). We separate the Hamiltonian into a zero-order

18
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part and a perturbation,

Ĥ = Ĥ0 + V̂ . (2.1)

When convenient, we shall write this in the form

Ĥ = Ĥ0 + λV̂ , (2.2)

where λ is an “order parameter” that is used to classify the various contri-
butions by their order and set to λ = 1 at the end. The exact (unknown)
solutions will be written

ĤΨn = EnΨn , (2.3)

while for the zero-order problem (assumed soluble) we write

Ĥ0Φn = E(0)
n Φn , (2.4)

with

〈Φm|Φn〉 = δmn . (2.5)

If Φn is nondegenerate, it is possible to number the solutions in such a way
that

lim
λ→0

Ψn = Φn ,

lim
λ→0

En = E(0)
n .

(2.6)

(If there are degeneracies, it is possible to choose the zero-order solutions so
that (2.6) is still satisfied.) Let us define the differences

χn = Ψn − Φn ,

∆En = En − E(0)
n ,

(2.7)

and then rewrite the Schrödinger equation in the forms

Ĥ(Φn + χn) = En(Φn + χn) ,

Ĥ0Φn + V̂ Φn + Ĥχn = E(0)
n Φn + ∆EnΦn + Enχn ,

(Ĥ − En)χn = (∆En − V̂ )Φn . (2.8)
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2.2.2 Indeterminacy of the solution

If we assume for the moment that ∆En (and thus En) is known then (2.8)
is an inhomogeneous linear differential equation for χn, since the right-hand
side is known. If we have a particular solution for such an equation, we can
add to it any multiple of the solution of the corresponding homogeneous
equation,

(Ĥ − En)f = 0 , (2.9)

and still have a solution. For example, if the inhomogeneous equation is

Âf = g ,

where Â is a linear operator, g is a known function and f is the unknown
function and if f0 is a particular solution, satisfying

Âf0 = g

while h is a solution of the homogeneous equation

Âh = 0

then

f = f0 + ch

(where c is an arbitrary constant) is also a solution of the original equation,
since

Âf = Âf0 + cÂh

= g + 0 = g .

Thus χn is not fully determined, since we can add to it an arbitrary multiple
of Ψn = Φn + χn, the only solution of (2.9) that is consistent with En.

This degree of freedom can be used to force χn to be orthogonal to Φn,

〈χn|Φn〉 = 0 . (2.10)

This choice means that we extract only that part of the correction χn to Φn

that is essentially different from Φn. In other words, we partition Ψn into
two parts, one parallel (i.e. proportional) to Φn and the other orthogonal
to it. As the choice of normalization is arbitrary, it is convenient to use
intermediate normalization:

〈Φn|Φn〉 = 1 , 〈χn|Φn〉 = 0 ,

〈Ψn|Φn〉 = 〈Φn + χn|Φn〉 = 1 + 0 = 1 ,

〈Ψn|Ψn〉 = 1 + 〈χn|χn〉 .

(2.11)



2.2 Classical derivation of RSPT 21

2.2.3 Energy expressions

From the intermediate-normalization assumption (2.11) we get

〈Φn|Ĥ|Ψn〉 = En〈Φn|Ψn〉 = En ,

〈Φn|Ĥ0|Ψn〉 = 〈Ĥ0Φn|Ψn〉 = E(0)
n 〈Φn|Ψn〉 = E(0)

n .
(2.12)

Subtracting the second equation from the first, we have

∆En = En − E(0)
n = 〈Φn|Ĥ − Ĥ0|Ψn〉

= 〈Φn|V̂ |Ψn〉 .

Thus

∆En = 〈Φn|V̂ |Ψn〉 ,

En = 〈Φn|Ĥ|Ψn〉 .
(2.13)

The last equation is sometimes referred to as the transition matrix element
form (or projected form) for the energy. When Ψn is exact this En is also
exact but if Ψn is approximate, with an error of order ε, then the error in
En is also of order ε and may be greater than the error in the variational
estimate

En =
〈Ψn|Ĥ|Ψn〉
〈Ψn|Ψn〉

(2.14)

(which has an error of order ε2 for a wave function error of order ε). (Note
that if Ψn is a full CI expansion based on Φn and its excitations then only
the coefficients of the single and double excitations are needed to determine
the exact energy from (2.13).)

2.2.4 Order-by-order expansion

To proceed further, we use the order parameter λ and expand:

Ψn = Φn + χn = Ψ(0)
n + λΨ(1)

n + λ2Ψ(2)
n + · · · (Ψ(0)

n ≡ Φn) ,

En = E(0)
n + ∆En = E(0)

n + λE(1)
n + λ2E(2)

n + · · ·
(2.15)

Substituting into the Schrödinger equation

(Ĥ − En)Ψn = 0 (2.16)

with Ĥ = Ĥ0 + λV̂ , we get

(Ĥ0 + λV̂ − E(0)
n − λE(1)

n − λ2E(2)
n − · · · )(Ψ(0)

n + λΨ(1)
n + λ2Ψ(2)

n + · · · ) = 0 .

(2.17)
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Equating coefficients of powers of λ gives for λ0, λ1 and λ2, respectively:

(Ĥ0 − E(0)
n )Ψ(0)

n = 0 (zero order), (2.18)

(Ĥ0 − E(0)
n )Ψ(1)

n = (E(1)
n − V̂ )Ψ(0)

n (first order), (2.19)

(Ĥ0 − E(0)
n )Ψ(2)

n = (E(1)
n − V̂ )Ψ(1)

n + E(2)
n Ψ(0)

n (second order) (2.20)

and in general, for λm, the mth-order equation

(Ĥ0 − E(0)
n )Ψ(m)

n = (E(1)
n − V̂ )Ψ(m−1)

n +
m−2∑
l=0

E(m−l)
n Ψ(l)

n ,

which becomes

(E(0)
n − Ĥ0)Ψ(m)

n = V̂ Ψ(m−1)
n −

m−1∑
l=0

E(m−l)
n Ψ(l)

n . (2.21)

In order to get expressions for E
(m)
n we apply 〈Φn| to each equation and

integrate. For λ1 we get

〈Φn|Ĥ0 − E(0)
n |Ψ(1)

n 〉 = 〈Φn|E(1)
n − V̂ |Φn〉 . (2.22)

By the Hermitian property of Ĥ0 we have

〈(Ĥ0 − E(0)
n )Φn︸ ︷︷ ︸

= 0

|Ψ(1)
n 〉 = E(1)

n − 〈Φn|V̂ |Φn〉︸ ︷︷ ︸
≡Vnn

and so

E(1)
n = 〈Φn|V̂ |Φn〉 = Vnn , (2.23)

where we set

Vij = 〈Φi|V̂ |Φj〉 . (2.24)

Thus we have obtained E
(1)
n without knowledge of Ψ(1)

n and can now solve
the inhomogeneous differential equation for Ψ(1)

n . We are free to require
〈Φn|Ψ(1)

n 〉 = 0, the intermediate-normalization condition. This is equivalent
to adding an arbitrary multiple of Φn (the solution of the corresponding
homogeneous equation (Ĥ0 − E

(0)
n )f = 0) to Ψ(1)

n . The same can be done
for each order m:

〈Φn|E(0)
n − Ĥ0︸ ︷︷ ︸
=0

|Ψ(m)
n 〉 = 〈Φn|V̂ |Ψ(m−1)

n 〉 −
m−1∑
l=0

E(m−l)
n 〈Φn|Ψ(l)

n 〉︸ ︷︷ ︸
= δl0

,

giving

E(m)
n = 〈Φn|V̂ |Ψ(m−1)

n 〉 . (2.25)



2.2 Classical derivation of RSPT 23

Thus, in principle, we can obtain each E
(m)
n from the previous Ψ(m−1)

n and
then solve for Ψ(m)

n etc., while always maintaining 〈Φn|Ψ(m)
n 〉 = 0 (m > 0).

2.2.5 Expansion in zero-order functions

The inhomogeneous differential equations for Ψ(m)
n are not easy to solve,

though they are easier than eigenvalue equations. One way to proceed is
to expand the unknown Ψ(m)

n in terms of the known zero-order solutions
Φk. This exploits the fact that the set of eigenfunctions of any semibounded
Hermitian operator form a complete set:

Ψ(m)
n =

∑
k

a
(m)
kn Φk =

∑
k

|Φk〉〈Φk|Ψ(m)
n 〉 ,

a
(m)
kn = 〈Φk|Ψ(m)

n 〉 (to be determined).
(2.26)

To obtain a
(m)
kn we multiply the mth-order equation by 〈Φk| and integrate:

〈Φk|E(0)
n − Ĥ0|︸ ︷︷ ︸

=(E
(0)
n −E

(0)
k )〈Φk|

Ψ(m)
n 〉 = 〈Φk|V̂ |Ψ(m−1)

n 〉︸ ︷︷ ︸∑
j〈Φk|V̂ |Φj〉〈Φj |Ψ(m−1)

n 〉

−
m−1∑
l=0

E(m−l)
n 〈Φk|Ψ(l)

n 〉︸ ︷︷ ︸
=a

(l)
kn

.

Thus

(E(0)
n − E

(0)
k )a(m)

kn =
∑

j

Vkja
(m−1)
jn −

m−1∑
l=0

E(m−l)
n a

(l)
kn . (2.27)

In this equation the l = 0 contributions are to be interpreted as a
(0)
kn =

〈Φk|Φn〉 = δkn.
This result provides a system of equations for the a

(m)
kn coefficients, to be

solved order by order, but the first thing to notice is that we have no equa-
tion for a

(m)
nn ; this coefficient is arbitrary, corresponding to the arbitrariness

of adding any multiple of the zero-order solution Φn (of the zero-order ho-
mogeneous equation for the same n). This arbitrariness appears for each
order Ψ(m)

n separately. The following choice of intermediate normalization
can thus be made for each order:

〈Φn|Ψ(m)
n 〉 = 0 (m > 0) ,

a(m)
nn = 0 (m > 0) .

Consequently

a(m)
nn = δm0 . (2.28)
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Since a
(0)
kn = δkn, the first-order equation becomes:

(E(0)
n − E

(0)
k )a(1)

kn = Vkn − E(1)
n a

(0)
kn = Vkn (n �= k),

so that

a
(1)
kn =

Vkn

E
(0)
n − E

(0)
k

(n �= k) . (2.29)

Thus we have the well-known result

Ψ(1)
n =

∑
k

′ Vkn

E
(0)
n − E

(0)
k

Φk (2.30)

where
∑′

k ≡
∑

k (k �=n). From this we get the second-order energy,

E(2)
n = 〈Φn|V̂ |Ψ(1)

n 〉 =
∑

k

a
(1)
knVnk

=
∑

k

′ VnkVkn

E
(0)
n − E

(0)
k

=
∑

k

′ |Vkn|2

E
(0)
n − E

(0)
k

,
(2.31)

which is also well known.
This process can be continued in the same manner to higher orders, e.g.,

a
(2)
kn =

(
E(0)

n − E
(0)
k

)−1
{∑

j

′
a

(1)
jn Vkj − E(1)

n a
(1)
kn − E(2)

n a
(0)
kn

}

=
∑

j

′ VkjVjn

(E(0)
n − E

(0)
k )(E(0)

n − E
(0)
j )

− VknVnn

(E(0)
n − E

(0)
k )2

(k �= n). (2.32)

However, it is somewhat cumbersome and not very convenient for the many-
body techniques that we shall want to use, so we will look at more systematic
techniques. However, before we do that, we will consider two more aspects of
this analysis, the Wigner 2n + 1 rule and the Hylleraas variational principle
for the first-order wave function.

2.2.6 Wigner’s 2n + 1 rule

Wigner’s rule (Wigner 1935) says that knowledge of Ψ(l)
n for l = 1, 2, . . . , m

allows us to determine directly the E
(l)
n for l = 1, 2, . . . , 2m + 1. This result

can be obtained by a series of transformations of the mth-order energy
contribution (2.25), E

(m)
n = 〈Φn|V̂ |Ψ(m−1)

n 〉 , using the differential equations
for Ψ(l)

n , to raise the order of the “bra” part while lowering the order of the
“ket” part, repeatedly until the two orders are equal (if m is odd) or differ
by unity (if m is even).
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We shall work out one step of this repetitive sequence explicitly, using the
first-order equation (2.19) in the form

V̂ Φn = (E(0)
n − Ĥ0)Ψ(1)

n + E(1)
n Φn (2.33)

and then the (m − 1)th-order equation in its usual form (2.21):

E(m)
n = 〈Φn|V̂ |Ψ(m−1)

n 〉
= 〈V̂ Φn|Ψ(m−1)

n 〉
= 〈(E(0)

n − Ĥ0)Ψ(1)
n |Ψ(m−1)

n 〉 + E(1)
n 〈Φn|Ψ(m−1)

n 〉
= 〈Ψ(1)

n |E(0)
n − Ĥ0|Ψ(m−1)

n 〉 + 0

= 〈Ψ(1)
n |V̂ |Ψ(m−2)

n 〉 −
m−2∑
l=0

E(m−l−1)
n 〈Ψ(1)

n |Ψ(l)
n 〉

= 〈Ψ(1)
n |V̂ |Ψ(m−2)

n 〉 −
m−2∑
l=1

E(m−l−1)
n 〈Ψ(1)

n |Ψ(l)
n 〉 (2.34)

(since the l = 0 term vanishes). If this is repeated k times we get

E(m)
n = 〈Ψ(k)

n |V̂ |Ψ(m−k−1)
n 〉 −

k∑
j=1

m−k−1∑
l=1

E(m−j−l)
n 〈Ψ(j)

n |Ψ(l)
n 〉 . (2.35)

Taking the cases in which m is replaced by 2m or 2m + 1 and k by m − 1
or m, respectively, we get Wigner’s results:

E(2m)
n = 〈Ψ(m−1)

n |V̂ |Ψ(m)
n 〉 −

m−1∑
j=1

m∑
l=1

E(2m−j−l)
n 〈Ψ(j)

n |Ψ(l)
n 〉 , (2.36)

E(2m+1)
n = 〈Ψ(m)

n |V̂ |Ψ(m)
n 〉 −

m∑
j=1

m∑
l=1

E(2m−j−l+1)
n 〈Ψ(j)

n |Ψ(l)
n 〉 . (2.37)

2.2.7 The Hylleraas variation principle for the first-order wave

function

Instead of expanding Ψ(1)
n in the zero-order functions Φk, the first-order wave

function and the second-order energy can also be obtained by a variational
method due to Hylleraas (1930) (see, e.g., Bethe and Salpeter (1957), pp.
122–3).
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We begin by multiplying the first-order equation (2.19) by 〈Ψ(1)
n | and

integrating:

〈Ψ(1)
n |Ĥ0 − E(0)

n |Ψ(1)
n 〉 = 〈Ψ(1)

n |E(1)
n − V̂ |Φn〉

or

0 = 〈Ψ(1)
n |V̂ − E(1)

n |Φn〉 + 〈Ψ(1)
n |Ĥ0 − E(0)

n |Ψ(1)
n 〉 .

To this equation we add the equation for the second-order energy,

E(2)
n = 〈Φn|V̂ − E(1)

n |Ψ(1)
n 〉

(note that we have not invoked 〈Φn|Ψ(1)
n 〉 = 0). The result is

E(2)
n = 〈Ψ(1)

n |V̂ − E(1)
n |Φn〉 + 〈Φn|V̂ − E(1)

n |Ψ(1)
n 〉 + 〈Ψ(1)

n |Ĥ0 − E(0)
n |Ψ(1)

n 〉
= 2 Re〈Ψ(1)

n |V̂ − E(1)
n |Φn〉 + 〈Ψ(1)

n |Ĥ0 − E(0)
n |Ψ(1)

n 〉 . (2.38)

If we define a functional

J2[Ψ] = 2 Re〈Ψ|V̂ − E(1)
n |Φn〉 + 〈Ψ|Ĥ0 − E(0)

n |Ψ〉 , (2.39)

then obviously

J2[Ψ(1)
n ] = E(2)

n . (2.40)

The variation of this functional is

δJ2[Ψ] = 〈δΨ|V̂ − E(1)
n |Φn〉 + 〈Φn|V̂ − E(1)

n |δΨ〉
+ 〈δΨ|Ĥ0 − E(0)

n |Ψ〉 + 〈Ψ|Ĥ0 − E(0)
n |δΨ〉 . (2.41)

Requiring that δJ2[Ψ] = 0 for any δΨ (including δΨ∗) results in

(V̂ − E(1)
n )Φn + (Ĥ0 − E(0)

n )Ψ = 0 ,

for which Ψ = Ψ(1)
n is a solution (since the above relation is equivalent to

the first-order equation). Thus Ψ(1)
n and E

(2)
n can be obtained by making

J2[Ψ] stationary. It is easily verified that

J2[Ψ + cΦn] = J2[Ψ]

for any constant c, and this degree of freedom can be used to enforce
〈Ψ|Φn〉 = 0. If the function Ψ is constrained at the outset to be orthogonal
to Φn then J2[Ψ] can be written in the form

J2[Ψ] = 2 Re〈Ψ|V̂ |Φn〉 + 〈Ψ|Ĥ0 − E(0)
n |Ψ〉 (〈Ψ|Φn〉 = 0) . (2.42)
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Next we show that if E
(0)
n is the lowest eigenvalue of Ĥ0 then J2[Ψ] is an

upper bound for E
(2)
n . We write Ψ in the form

Ψ = Ψ(1)
n + χ . (2.43)

Then

J2[Ψ] =J2[Ψ(1)
n ] + 2 Re〈χ|V̂ − E(1)

n |Φn〉
+ 2 Re〈χ|Ĥ0 − E(0)

n |Ψ(1)
n 〉 + 〈χ|Ĥ0 − E(0)

n |χ〉 . (2.44)

Using the first-order equation, we find that the third term can be written
as the negative of the second term, canceling it, so that we have

J2[Ψ] = E(2)
n + 〈χ|Ĥ0 − E(0)

n |χ〉 . (2.45)

If E
(0)
n is the lowest eigenvalue of Ĥ0 then the integral 〈χ|Ĥ0 − E

(0)
n |χ〉 is

nonnegative and is zero if, and only if, χ is the corresponding eigenfunction.
Therefore

J2[Ψ] ≥ E(2)
n (E(0)

n ≤ E
(0)
k for all k �= n) . (2.46)

Thus J2[Ψ], with an arbitrary trial function Ψ containing adjustable pa-
rameters, can be used in a variational approach for finding approximations
to the first-order wave function and second-order energy, and this provides
an upper bound to E

(2)
n in the case of a state having the lowest zero-order

energy (provided that Φ0 is an exact eigenfunction of Ĥ0).

2.3 Projection operators

Before we proceed to alternative derivations of the perturbation theory equa-
tions, we shall introduce two projection operators. To simplify the notation,
we shall use the index 0, instead of n, to indicate the state in which we
are interested (regardless of whether it is the ground state or some excited
state). We shall omit this index entirely when there is no danger of confu-
sion, and particularly when we refer to the exact wave function Ψ0 ≡ Ψ, the
exact energy E0 ≡ E and their order-by-order contributions Ψ(m) and E(m).

We define the projection operators in terms of the orthonormal zero-order
functions:

P̂ = |Φ0〉〈Φ0| ,

Q̂ = 1̂ − P̂ =
∑
i�=0

|Φi〉〈Φi| =
∑

i

′
|Φi〉〈Φi| (2.47)
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(where
∑′

i ≡
∑

i (i�=0)). These operators are linear, Hermitian and idempo-
tent :

P̂ 2 = |Φ0〉〈Φ0|Φ0〉〈Φ0| = |Φ0〉〈Φ0| = P̂ ,

Q̂2 = (1̂ − P̂ )2 = 1̂ − P̂ − P̂ + P̂ 2 = 1̂ − P̂ = Q̂ ,

P̂ Q̂ = Q̂P̂ = 0̂ ,

(2.48)

as required for projection operators. (A more general expression for these
operators, applicable to nonorthonormal zero-order functions as long as Φ0

is orthogonal to all the other Φi, is given by the form

P̂ = |Φ0〉〈Φ0|Φ0〉−1〈Φ0| ,
Q̂ = |h〉〈h|h〉−1〈h| ,

(2.49)

where |h〉 is a row vector consisting of all the functions |Φi〉 (i �= 0) and 〈h|
is its adjoint column vector. Note that 〈h|h〉−1 = S−1 is the inverse of the
overlap matrix S = 〈h|h〉. It is easy to see that this form of the operators
satisfies the projection operator conditions.)

When P̂ operates on a general function Ψ expressed in terms of the Φi,
i.e.

Ψ =
∑

i

aiΦi , (2.50)

then

P̂Ψ =
∑

i

ai|Φ0〉〈Φ0|Φi〉 =
∑

i

ai|Φ0〉δ0i = a0Φ0 , (2.51)

so that P̂ extracts the Φ0 component from Ψ. Similarly, Q̂ annihilates the
Φ0 component,

Q̂Ψ = (1̂ − P̂ )Ψ = Ψ − a0Φ0 =
∑

i

′
aiΦi . (2.52)

The operator Q̂ projects out the orthogonal complement to Φ0 . Any function
can then be written as a sum of the two projections:

Ψ = 1̂Ψ = (P̂ + Q̂)Ψ = P̂Ψ + Q̂Ψ . (2.53)

This is often termed the “resolution of the identity” into its components.
Similarly, any operator can be resolved into four components,

Â = (P̂ + Q̂)Â(P̂ + Q̂)

= P̂ ÂP̂ + Q̂ÂQ̂︸ ︷︷ ︸ + P̂ ÂQ̂ + Q̂ÂP̂︸ ︷︷ ︸
= ÂD + ÂX , (2.54)
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where ÂD = P̂ ÂP̂ + Q̂ÂQ̂ is the block-diagonal part of Â (also called ÂE,
or the even part) and ÂX = P̂ ÂQ̂ + Q̂ÂP̂ is the cross- or off-diagonal part
(also called ÂO, or the odd part). Note that

(ÂB̂)D = ÂDB̂D + ÂXB̂X ,

(ÂB̂)X = ÂDB̂X + ÂXB̂D .
(2.55)

The projection operators P̂ and Q̂ commute with Ĥ0. For a general
function f expanded in the zero-order functions Φi,

f =
∑

i

ciΦi , (2.56)

we have

P̂ Ĥ0f =
∑

i

ciP̂ Ĥ0Φi =
∑

i

ciE
(0)
i P̂Φi = c0E

(0)
0 Φ0 ,

Ĥ0P̂ f =
∑

i

ciĤ0P̂Φi = c0Ĥ0Φ0 = c0E
(0)
0 Φ0 .

(2.57)

Thus P̂ Ĥ0 = Ĥ0P̂ (since f is arbitrary), so that [P̂ , Ĥ0] = 0. Similarly
[Q̂, Ĥ0] = 0 (to see this, set Q̂ = 1̂ − P̂ ).

2.4 General derivation of formal time-independent perturbation
theories

2.4.1 General formalism

Now we turn to a more general, and somewhat more elegant, derivation of
the perturbation equations. We shall use λ = 1 and determine the ordering
of the contributions to En and Ψn on the basis of the number of V̂ factors
and other considerations. We shall continue to use the index 0, instead of n,
to indicate the state in which we are interested (regardless of whether it is
the ground state or some excited state), and shall omit this index altogether
whenever there is no danger of confusion.

To be more general, we shall not always require that all the functions
Φi, in terms of which the solutions are to be expanded, are eigenfunctions
of Ĥ0. The only requirements are that these functions are orthonormal,
that Φ0 is an eigenfunction of Ĥ0 and that all other Φi span the orthogonal
complement of Φ0. The case in which all the Φi are eigenfunctions of Ĥ0 , in
which some simplifications are possible, will be referred to as the diagonal
case, because in terms of these functions the matrix representation of Ĥ0 is
diagonal.
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We begin the derivation with the Schrödinger equation in the form

(Ĥ0 + V̂ )Ψ = EΨ , (2.58)

with zero-order solution

Ĥ0Φ0 = E
(0)
0 Φ0 . (2.59)

Operating on (2.58) with 〈Φ0| we obtain

〈Φ0|Ĥ0|︸ ︷︷ ︸
=E

(0)
0 〈Φ0|

Ψ〉 + 〈Φ0|V |Ψ〉 = E〈Φ0|Ψ〉 , (2.60)

where we have used the Hermitian property of Ĥ0. With intermediate nor-
malization this gives

E
(0)
0 + 〈Φ0|V |Ψ〉 = E ,

so that

∆E = 〈Φ0|V |Ψ〉 , (2.61)

as we already know. Next, we write Ψ in the form

Ψ = P̂Ψ + Q̂Ψ = |Φ0〉〈Φ0|Ψ〉 +
∑

i

′
|Φi〉〈Φi|Ψ〉

= Φ0 + χ , (2.62)

whence

Φ0 = P̂Ψ , χ = Q̂Ψ . (2.63)

Rearranging the Schrödinger equation (2.58) as

−Ĥ0Ψ = (V̂ − E)Ψ , (2.64)

we introduce an arbitrary parameter ζ by adding ζΨ to each side:

(ζ − Ĥ0)Ψ = (V̂ − E + ζ)Ψ . (2.65)

This parameter is a convenience that will allow us to obtain different per-
turbation expansions from the same development by different choices of ζ

(e.g., ζ = E or ζ = E
(0)
0 ).

We next apply Q̂ to both sides:

Q̂(ζ − Ĥ0)Ψ = Q̂(V̂ − E + ζ)Ψ . (2.66)
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Using the idempotency of Q̂ and its commutation with Ĥ0, the operator on
the left-hand side can be rewritten as

Q̂(ζ − Ĥ0)Ψ = Q̂2(ζ − Ĥ0)Ψ = Q̂(ζ − Ĥ0)Q̂Ψ . (2.67)

The operator Q̂(ζ − Ĥ0)Q̂ operates entirely in Q-space and in terms of the
zero-order functions has the expansion

Q̂(ζ − Ĥ0)Q̂ =
∑

i

′∑
j

′
|Φi〉〈Φi|ζ − Ĥ0|Φj〉〈Φj | , (2.68)

which simplifies in the diagonal case to

Q̂(ζ − Ĥ0)Q̂ =
∑

i

′
|Φi〉(ζ − E

(0)
i )〈Φi| . (2.69)

Going back to the rewritten Schrödinger equation (2.66), we now have

Q̂(ζ − Ĥ0)Q̂Ψ = Q̂(V̂ − E + ζ)Ψ . (2.70)

We restrict the possible choices of ζ to those that do not coincide with
any of the eigenvalues of Ĥ0 in Q-space, so that the inverse of Q̂(ζ−Ĥ0)Q̂ in
Q-space exists. (If E

(0)
0 is a well-separated eigenvalue of Ĥ0 then a choice of

ζ in the neighborhood of E
(0)
0 would be satisfactory.) This inverse is written

in the form

R̂0(ζ) =
Q̂

ζ − Ĥ0

≡
∑

i

′∑
j

′
|Φi〉〈Φi(ζ − Ĥ0)−1|Φj〉〈Φj | (2.71)

and is called the resolvent of Ĥ0. In the diagonal case it can be expressed
as

R̂0(ζ) =
∑

i

′∑
j

′
|Φi〉〈Φi|(ζ − E

(0)
j )−1|Φj〉〈Φj | =

∑
i

′ |Φi〉〈Φi|
(ζ − E

(0)
i )

, (2.72)

which rationalizes the notation

Q̂

ζ − Ĥ0

.

(If Ĥφ = εφ then f(Ĥ)φ = f(ε)φ; here f(Ĥ0) = (ζ − Ĥ0)−1.)
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It is easy to see that R̂0(ζ) as given in the previous equation is the inverse
of Q̂(ζ − Ĥ0)Q̂ in Q-space, since

Q̂

ζ − Ĥ0

Q̂(ζ − Ĥ0)Q̂

=
(∑

i,j

′
|Φi〉〈Φi|(ζ − Ĥ0)−1|Φj〉〈Φj |

)(∑
k,l

′
|Φk〉〈Φk|(ζ − Ĥ0)|Φl〉〈Φl|

)

=
∑
i,l

′
|Φi〉

〈
Φi

∣∣∣∣(ζ − Ĥ0)−1

(∑
j

′
|Φj〉〈Φj |

)
(ζ − Ĥ0)

∣∣∣∣Φl

〉
〈Φl|

=
∑
i,l

′
|Φi〉

〈
Φi

∣∣∣∣(ζ − Ĥ0)−1(1 − |Φ0〉〈Φ0|)(ζ − Ĥ0)
∣∣∣∣Φl

〉
〈Φl|

=
∑

i

′
|Φi〉〈Φi| = Q̂ , (2.73)

because the sums exclude i = 0, l = 0. (Note that the inverse of an operator
Â in Q-space is any operator B̂ that satisfies ÂB̂ = B̂Â = Q̂. It is not
necessarily a general inverse, i.e. in the complete Hilbert space. Projection
operators have no inverses outside the space onto which they project; within
that space they are their own inverses, since, e.g., Q̂Q̂ = Q̂.)

Applying R̂0(ζ) = Q̂

ζ−Ĥ0
to both sides of (2.70), we get

Q̂Ψ = R̂0(ζ)(V̂ − E + ζ)Ψ , (2.74)

and thus, substituting in Ψ = Φ0 + Q̂Ψ, we have

Ψ = Φ0 + R̂0(ζ)(V̂ − E + ζ)Ψ . (2.75)

This can be seen as an iterative equation for Ψ. For example, substituting
the entire right-hand side of (2.75) into the Ψ on the right-hand side of the
same equation, we have

Ψ = Φ0 + R̂0(ζ)(V̂ − E + ζ)Φ0

+ R̂0(ζ)(V̂ − E + ζ)R̂0(ζ)(V̂ − E + ζ)Ψ (2.76)

and, if we continue in the same manner,

Ψ =
∞∑

m=0

{
R̂0(ζ)(V̂ − E + ζ)

}mΦ0 (2.77)

(provided that the series converges). This would be a formal solution to the
problem except that the unknown E appears on the right-hand side. For the
same reason, the mth term in the sum does not simply correspond to the
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mth-order correction to the wave function, since E contains contributions
of different orders. In any case, using ∆E = 〈Φ0|V̂ |Ψ〉 we have, formally,

∆E =
∞∑

m=0

〈Φ0|V̂
[
R̂0(ζ)(V̂ − E + ζ)

]m
|Φ0〉 , (2.78)

which is an implicit equation for E = E
(0)
0 + ∆E.

2.4.2 Brillouin–Wigner perturbation theory

Different choices of ζ can now be made in order to obtain different types of
perturbation theory (PT) expansions. The first is the choice ζ = E, which
produces Brillouin–Wigner PT (BWPT) (Brillouin 1932, Wigner 1935).
This choice cancels −E + ζ in R̂0(ζ)(V̂ − E + ζ)

m
and leads to

Ψ =
∞∑

m=0

{
R̂0(E)V̂

}mΦ0

∆E =
∞∑

m=0

〈Φ0|V̂
{
R̂0(E)V̂

}m|Φ0〉
(BWPT). (2.79)

More explicitly, the energy expansion becomes

∆E = 〈Φ0|V̂ |Φ0〉 + 〈Φ0|V̂ R̂0(E)V̂ |Φ0〉
+ 〈Φ0|V̂ R̂0(E)V̂ R̂0(E)V̂ |Φ0〉 + · · · ,

(2.80)

but the equations are still implicit, since the unknown E appears on the
r.h.s. In principle, they can be solved iteratively. Put in an estimate for E,
such as the first-order result E

(0)
0 +〈Φ0|V̂ |Φ0〉 and then compute the second-

order correction. Use the corrected E to compute a better second- (and/or
third-) order correction, etc., until self-consistency is obtained. However,
this procedure is generally too cumbersome to be very practical.

It is instructive to see how the BWPT equations would be evaluated
(ignoring the problem with E), assuming the diagonal case for simplicity.
In this case

R̂0(E) =
Q̂

E − Ĥ0

=
∑

i

′
|Φi〉

1

E − E
(0)
i

〈Φi| , (2.81)
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and the second-order energy becomes

E(2) = 〈Φ0|V̂ R̂0(E)V̂ |Φ0〉

=
∑

i

′
〈Φ0|V̂ |Φi〉(E − E

(0)
i )−1〈Φi|V̂ |Φ0〉

=
∑

i

′ V0iVi0

E − E
(0)
i

, (2.82)

which is similar to the RSPT result except for the presence of E rather than
E

(0)
0 in the denominator. Similarly, for third order:

E(3) =
∑
i,j

′
〈Φ0|V̂ |Φi〉(E − E

(0)
i )−1〈Φi|V̂ |Φj〉(E − E

(0)
j )−1〈Φj |V̂ |Φ0〉

=
∑
i,j

′ V0iVijVj0

(E − E
(0)
i )(E − E

(0)
j )

(BWPT) (2.83)

etc.
The form of these equations is actually simpler than that of the RSPT

equations (ignoring the problem of the unknown E in the denominators),
because of the absence of the so-called renormalization terms – the addi-
tional sums

∑m−1
l=0 involving the lower-order energies in RSPT. However, it

does not provide a true order-by-order expansion for the energy (because of
the presence of the infinite-order E), and related to this is a very fundamen-
tal problem with BWPT, its lack of extensivity when stopped at any finite
order. In fact, BWPT resembles CI in many respects, and successive orders
of the BWPT calculation are closely related to the successive iterations used
to solve the matrix eigenvalue problem in some CI procedures.

2.4.3 Demonstration of non-extensivity of finite-order BWPT

We shall consider again the model problem of N noninteracting He atoms,
and take the second-order energy as an example:

E(2) =
∑

i

′ |Vi0|2

E − E
(0)
i

, (2.84)

where E is the exact ground-state energy and E
(0)
0 , E

(0)
i , . . . are the zero-

order energies associated with the zero-order functions Φ0, Φi, . . . We shall
use a basis of two configurations per atom, φ0(i) and χ(i) for the ith atom,
as in Section 1.7. In this basis the complete Hamiltonian for one atom is

ĥ = (P̂ + Q̂)ĥ(P̂ + Q̂) = P̂ ĥP̂ + P̂ ĥQ̂ + Q̂ĥP̂ + Q̂ĥQ̂ (2.85)
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(here P̂ = |φ0〉〈φ0|, Q̂ = |χ〉〈χ|) and, using the notation of Section 1.7,

ĥ = |φ0〉ε0〈φ0| + |φ0〉β〈χ| + |χ〉β∗〈φ0| + |χ〉α〈χ| . (2.86)

The zero-order Hamiltonian for the atom can be taken as the diagonal part,

ĥ0 = |φ0〉ε0〈φ0| + |χ〉α〈χ| , (2.87)

and the perturbation v̂ is

v̂ = |φ0〉β〈χ| + |χ〉β∗〈φ0| . (2.88)

Note that φ0 and χ are eigenfunctions of ĥ0 with eigenvalues ε0 and α,
respectively:

ĥ0|φ0〉 = |φ0〉ε0 〈φ0|φ0〉︸ ︷︷ ︸
=1

+|χ〉α 〈χ|φ0〉︸ ︷︷ ︸
=0

= ε0|φ0〉 ,

ĥ0|χ〉 = |φ0〉ε0〈φ0|χ〉 + |χ〉α〈χ|χ〉 = α|χ〉 .

(2.89)

The basis for N atoms is the set of functions

Φ0 = Aφ0(1)φ0(2) · · ·φ0(N) ,

Φi = Aφ0(1) · · ·χ(i) · · ·φ0(N) ,

Φij = Aφ0(1) · · ·χ(i) · · ·χ(j) · · ·φ0(N) ,

(2.90)

etc. The zero-order Hamiltonian is Ĥ0 =
∑

i ĥ0(i), also given as

Ĥ0 = |Φ0〉〈Φ0|Ĥ|Φ0〉〈Φ0| +
∑

i

|Φi〉〈Φi|Ĥ|Φi〉〈Φi|

+
∑
i<j

|Φij〉〈Φij |Ĥ|Φij〉〈Φij | + . . .

= |Φ0〉E(0)
0 〈Φ0| +

∑
i

|Φi〉E(0)
i 〈Φi| +

∑
i<j

|Φij〉E(0)
ij 〈Φij | + · · · (2.91)

(note that the sums exclude i = 0, j = 0, etc.), in which (see Section 1.7)

E
(0)
i = E

(0)
0 + α − ε0 , E

(0)
ij = E

(0)
0 + 2α − 2ε0 , . . . (2.92)

This zero-order Hamiltonian has the above basis functions as eigenfunctions:

Ĥ0|Φ0〉 = |Φ0〉E(0)
0 〈Φ0|Φ0〉 + 0 = E

(0)
0 |Φ0〉 , (2.93)

Ĥ0|Φi〉 =
∑

j

|Φj〉E(0)
j 〈Φj |Φi〉︸ ︷︷ ︸

δij

+ 0 = (E(0)
0 + α − ε0)|Φi〉 ,
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etc. The perturbation consists of the cross terms:

V̂ =
∑

i

|Φ0〉β〈Φi| +
∑
i<j

|Φi〉β〈Φij | +
∑
i<j

|Φj〉β〈Φij |

+
∑

i

|Φi〉β∗〈Φ0| +
∑
i<j

|Φij〉β∗〈Φi| +
∑
i<j

|Φij〉β∗〈Φj | + . . . . (2.94)

In all nonzero terms |Φ...〉 · · · 〈Φ...| in V̂ the number of excited atoms in the
ket and bra differs by exactly unity, and all other indices are identical in
the two Φ... functions. In all other cases the corresponding matrix elements
vanish, e.g., 〈Φi|Ĥ|Φjk〉 =

∑
l〈Φi|ĥ(l)|Φjk〉 = 0 (i �= j, i �= k).

The only matrix elements we need for the second-order energy are

V0i = 〈Φ0|V̂ |Φi〉 = β (2.95)

(which are independent of N). The denominators are

E − E
(0)
i = E − (E(0)

0 + α − ε0) = ∆E − α + ε0 . (2.96)

We can proceed in one of two ways, as follows.

1. We can use our knowledge of the exact E = Nε, or ∆E = E−E
(0)
0 =

Nε − Nε0 = N∆ε, giving the second-order energy

E(2) =
∑

i

|V0i|2
N∆ε − α + ε0

=
N∑

i=1

|β|2
N∆ε − α + ε0

=
N |β|2

N∆ε − α + ε0
;

thus

lim
N→∞

E(2) =
|β|2
∆ε

= constant . (2.97)

2. We can use E(2) instead of E−E
(0)
0 = ∆E (note that E(1) = V00 = 0

in this example):

E(2) =
N |β|2

E(2) − α + ε0
, (E(2))

2
+ (ε0 − α)E(2) − N |β|2 = 0 ;

thus

E(2) = 1
2(α − ε0) ± 1

2

√
(α − ε0)2 + 4N |β|2 , (2.98)

just as in CID, with the same limiting behavior as N → ∞, E(2) →
−|β|

√
N .

In neither case have we obtained the extensive result, E(2) ∝ N . It is the
fact that we have E rather than E(0) in the denominator that is responsible
for the lack of extensivity.
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2.4.4 Formal Rayleigh–Schrödinger perturbation theory

Returning to the general results (2.77), (2.78), we will now derive the Rayleigh–
Schrödinger perturbation theory (RSPT) (Rayleigh 1894, Schrödinger 1926)
by setting

ζ = E
(0)
0 (RSPT), (2.99)

so that

ζ − E = −∆E . (2.100)

We then have

Ψ =
∞∑

m=0

[
R̂0(E

(0)
0 )(V̂ − ∆E)

]m
Φ0

∆E =
∞∑

m=0

〈Φ0|V̂
[
R̂0(E

(0)
0 )(V̂ − ∆E)

]m
|Φ0〉

(RSPT). (2.101)

Thus we have removed the unknown E in the denominators in R̂0, but we
still have ∆E in V̂ − ∆E. Because of the presence of ∆E we do not yet
have a true expansion in orders of λ (or orders of V̂ ). This presence can
be removed by substituting the formula in 2.101 for each ∆E on the r.h.s.,
iteratively, and collecting terms of each order of λ by counting the number
of V̂ factors in each term.

We shall now proceed to do that, simplifying the notation further by
omitting the argument E

(0)
0 from the resolvent R̂0(E

(0)
0 ) ≡ R̂0 and omitting

the subscript 0 from Φ0. We then have

Ψ =
∞∑

m=0

[
R̂0(V̂ − ∆E)

]m
Φ

∆E =
∞∑

m=0

〈Φ|V̂
[
R̂0(V̂ − ∆E)

]m
|Φ〉

(RSPT). (2.102)

We will examine the energy expression first, since ∆E appears on the
r.h.s. in both equations. Expanding the first few orders for ∆E, we get

∆E = 〈Φ|V̂ |Φ〉 + 〈Φ|V̂ R̂0(V̂ − ∆E)|Φ〉
+ 〈Φ|V̂ R̂0(V̂ − ∆E)R̂0(V̂ − ∆E)|Φ〉
+ 〈Φ|V̂ R̂0(V̂ − ∆E)R̂0(V̂ − ∆E)R̂0(V̂ − ∆E)|Φ〉 + · · · (2.103)

First we note that the final ∆E in each term can be ignored, because

R̂0∆E|Φ〉 = ∆E R̂0|Φ〉 = 0 (2.104)
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(since R̂0 contains Q̂). Thus

∆E = 〈Φ|V̂ |Φ〉 + 〈Φ|V̂ R̂0V̂ |Φ〉 + 〈Φ|V̂ R̂0(V̂ − ∆E)R̂0V̂ |Φ〉
+ 〈Φ|V̂ R̂0(V̂ − ∆E)R̂0(V̂ − ∆E)R̂0V̂ |Φ〉 + · · ·

= 〈Φ|V̂ |Φ〉 + 〈Φ|V̂ R̂0V̂ |Φ〉 + 〈Φ|V̂ R̂0V̂ R̂0V̂ |Φ〉
− 〈Φ|V̂ R̂0〈Φ|V̂ |Φ〉R̂0V̂ |Φ〉 − 〈Φ|V̂ R̂0〈Φ|V̂ R̂0V̂ |Φ〉R̂0V̂ |Φ〉 − · · ·
+ 〈Φ|V̂ R̂0V̂ R̂0V̂ R̂0V̂ |Φ〉
− 〈Φ|V̂ R̂0V̂ R̂0〈Φ|V̂ |Φ〉R̂0V̂ |Φ〉 − 〈Φ|V̂ R̂0〈Φ|V̂ |Φ〉R̂0V̂ R̂0V̂ |Φ〉
+ 〈Φ|V̂ R̂0〈Φ|V̂ |Φ〉R̂0〈Φ|V̂ |Φ〉R̂0V̂ |Φ〉 + · · · (2.105)

Arranging this result according to the number of V̂ factors (i.e., in orders
of λ) we have

∆E = 〈Φ|V̂ |Φ〉 + 〈Φ|V̂ R̂0V̂ |Φ〉
+ 〈Φ|V̂ R̂0V̂ R̂0V̂ |Φ〉 − 〈Φ|V̂ |Φ〉〈Φ|V̂ R̂ 2

0 V̂ |Φ〉
+ 〈Φ|V̂ R̂0V̂ R̂0V̂ R̂0V̂ |Φ〉 − 〈Φ|V̂ R̂0V̂ |Φ〉〈Φ|V̂ R̂ 2

0 V̂ |Φ〉
− 〈Φ|V̂ |Φ〉〈Φ|V̂ R̂0(V̂ R̂0 + R̂0V̂ )R̂0V̂ |Φ〉
+ 〈Φ|V̂ |Φ〉2〈Φ|V̂ R̂ 3

0 V̂ |Φ〉 + · · ·

(2.106)

Thus

E(1) = 〈Φ|V̂ |Φ〉 = V00 ,

E(2) = 〈Φ|V̂ R̂0V̂ |Φ〉 ,

E(3) = 〈Φ|V̂ R̂0(V̂ − 〈Φ|V̂ |Φ〉)R̂0V̂ |Φ〉 = 〈Φ|V̂ R̂0(V̂ − E(1))R̂0V̂ |Φ〉 ,

E(4) = 〈Φ|V̂ R̂0(V̂ − E(1))R̂0(V̂ − E(1))R̂0V̂ |Φ〉 − E(2)〈Φ|V̂ R̂ 2
0 V̂ |Φ〉 .

(2.107)

The combination V̂ − E(1) appears very frequently, and it is convenient to
use a special symbol for it,

Ŵ = V̂ − E(1) , (2.108)

so that

Wij = Vij − δijE
(1) , (2.109)

and we have

E(3) = 〈Φ|V̂ R̂0Ŵ R̂0V̂ |Φ〉
E(4) = 〈Φ|V̂ R̂0Ŵ R̂0Ŵ R̂0V̂ |Φ〉 − E(2)〈Φ|V̂ R̂ 2

0 V̂ |Φ〉 ,
(2.110)
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etc. In the diagonal case we can make these equations more explicit. Using
the abbreviation

D0i = E
(0)
0 − E

(0)
i (2.111)

for the denominators in the resolvent, the various orders of the energy can
be written in the diagonal case in the form:

E(1) = V00 ,

E(2) =
∑

i

′V0iVi0

D0i
,

E(3) =
∑
ij

′V0iWijVj0

D0iD0j
,

E(4) =
∑
ijk

′V0iWijWjkVk0

D0iD0jD0k
− E(2)

∑
i

′V0iVi0

D2
0i

.

(2.112)

We see that each E(m) contains a principal term,

〈Φ|V̂ R̂0Ŵ R̂0Ŵ · · · Ŵ R̂0V̂ |Φ〉 =
∑

ijk···yz

′ V0iWijWjk · · ·WyzVz0

D0iD0jD0k . . . D0yD0z
, (2.113)

with m factors V̂ , Ŵ , m − 1 factors R̂0 and some renormalization terms;
these contain lower-order energies E(l) (2 ≤ l ≤ m−2) and factors involving
powers R̂ k

0 (k > 1). (It is convenient not to consider the E(1) terms in Ŵ

as renormalization terms, since they are simply accommodated by a shift of
origin for V̂ , replacing V̂ by Ŵ , as shown at the end of this subsection.)

Similarly, for the wave function we obtain (the general form is followed
by the diagonal-case formula in each equation):

Ψ(1) = R̂0V̂ |Φ〉 =
∑

i

′
|Φi〉

Vi0

D0i
,

Ψ(2) = R̂0Ŵ R̂0V̂ |Φ〉 =
∑
ij

′
|Φi〉

WijVj0

D0iD0j
,

Ψ(3) = R̂0Ŵ R̂0Ŵ R̂0V̂ |Φ〉 − 〈Φ|V̂ R̂0V̂ |Φ〉R̂2
0V̂ |Φ〉

=
∑
ijk

′
|Φi〉

WijWjkVk0

D0iD0jD0k
− E(2)

∑
i

′
|Φi〉

Vi0

D0i
2 ,

(2.114)

etc. If we now look back at E(4) we see that the renormalization term there
can be written as

E(2)〈Φ|V̂ R̂0R̂0V̂ |Φ〉 = E(2)〈R̂0V̂ Φ|R̂0V̂ Φ〉 = E(2)〈Ψ(1)|Ψ(1)〉 , (2.115)
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so that

E(4) = 〈Φ|V̂ R̂0Ŵ R̂0Ŵ R̂0V̂ |Φ〉 − E(2)〈Ψ(1)|Ψ(1)〉

=
∑
ijk

′V0iWijWjkVk0

D0iD0jD0k
− E(2)〈Ψ(1)|Ψ(1)〉 (RSPT) . (2.116)

This is a well-known form for E(4).
Note that E(1) = V00 could be eliminated completely from the analysis if

Ĥ0 shifted by V00, as follows:

Ĥ = Ĥ0 + V̂

= (Ĥ0 + V00) + (V̂ − V00)

= ˆ̃H0 + Ŵ , (2.117)

where
ˆ̃H0 = Ĥ0 + V00 , Ŵ = V̂ − V00 , V00 = 〈Φ0|V̂ |Φ0〉 = E

(1)
0 . (2.118)

In this form ˆ̃H0 is the new zero-order Hamiltonian and Ŵ is the pertur-
bation. In the diagonal case the original zeroth-order functions Φi are still
eigenfunctions of the new ˆ̃H0, with eigenvalues V00 + E

(0)
i . The factors D0i

in the denominators, which are differences of eigenvalues, are unchanged.
With this new splitting of the Hamiltonian we have

Ẽ
(0)
0 = 〈Φ|Ĥ0 + V00|Φ〉 = E

(0)
0 + V00 (2.119)

(which equals ESCF if Φ is the SCF wave function) and

Ẽ
(1)
0 = 〈Φ|V̂ − V00|Φ〉 = V00 − V00 = 0 , (2.120)

i.e., the first-order energy vanishes,

W00 = 0 . (2.121)

Higher orders remain unchanged.

2.4.5 The general (non-diagonal) case

In the general case, in which the representation of Ĥ0 is non-diagonal, the
resolvent R̂0 is not given explicitly in terms of the zeroth-order energies
E

(0)
i , but it can be obtained by inversion of the matrix representation of

Q̂(E(0)
0 − Ĥ0)Q̂. However, explicit inversion of that matrix is not actually

required since the quantities needed are matrix elements of R̂0Ŵ . If we
write

X̂ = R̂0Ŵ (2.122)
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then

Q̂
(
E

(0)
0 − Ĥ0

)
Q̂X̂ = Q̂Ŵ , (2.123)

and the matrix representation X of X̂ can be obtained by the solution of
the system of linear equations

(E(0)
0 1 − H0)X = W (2.124)

or, explicitly, ∑
j

′(
E

(0)
0 δij − (Ĥ0)ij

)
Xjk = Wik . (2.125)

If the matrix representation of Ĥ0 is sparse (as often happens in actual
applications), the iterative solution of the linear equation system is relatively
easy. Note that only the k = 0 column of X is required for R̂0V̂ |Φ〉, in which
case we have Wi0 = Vi0 (i �= 0).

Once X has been obtained, the energy expressions can be determined
from

E(2) = 〈Φ|V̂ X̂|Φ〉 ,

E(3) = 〈Φ|V̂ X̂2|Φ〉 ,

E(4) = 〈Φ|V̂ X̂3|Φ〉 − E(2)〈Ψ(1)|Ψ(1)〉 ,

(2.126)

with similar equations for the wave function.
Obviously, in the diagonal case,

Xij =
Wij

E
(0)
0 − E

(0)
i

=
Wij

D0i
. (2.127)

2.4.6 Bracketing procedure for RSPT

If the process of deriving the terms in the series (2.106) for ∆E is continued,
a general result emerges (Brueckner 1955, Huby 1961, Paldus and Č́ıžek
1975). To show this result, we first simplify the notation further, writing

〈V̂ R̂0V̂ R̂0 · · · R̂0V̂ 〉 ≡ 〈Φ|V̂ R̂0V̂ R̂0 · · · R̂0V̂ |Φ〉 (2.128)

(i.e. omitting the Φ| from the bra and |Φ from the ket). Then the principal
term for E(m) is

〈V̂ R̂0V̂ R̂0V̂ · · · R̂0V̂ 〉
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and contains m operators V̂ . All the other terms are obtained by inserting
bracket pairs in all possible valid ways around V̂ operators and around
V̂ R̂0 · · · V̂ products in the principal term, always excluding the V̂s at the two
ends but including multiple brackets and brackets within brackets (properly
nested). Each term is given a sign factor (−1)l, where l is the number of
inserted bracket pairs. Thus, at fourth order we obtain

E(4) = 〈V̂ R̂0V̂ R̂0V̂ R̂0V̂ 〉
− 〈V̂ R̂0〈V̂ 〉R̂0V̂ R̂0V̂ 〉 − 〈V̂ R̂0V̂ R̂0〈V̂ 〉R̂0V̂ 〉
+ 〈V̂ R̂0〈V̂ 〉R̂0〈V̂ 〉R̂0V̂ 〉 − 〈V̂ R̂0〈V̂ R̂0V̂ 〉R̂0V̂ 〉 . (2.129)

At fifth order there are already 14 terms (a principal term plus 13 bracket-
ings) that include nested bracketings such as

〈V̂ R̂0〈V̂ R̂0〈V̂ 〉R̂0V̂ 〉R̂0V̂ 〉 = 〈V̂ 〉〈V̂ R̂2
0V̂ 〉〈V̂ R̂2

0V̂ 〉
= E(1)〈Ψ(1)|Ψ(1)〉2 .

(2.130)

It can be shown that the total number of terms at the nth order is

(2n − 2)!
n!(n − 1)!

.

We can reduce the proliferation of terms substantially by using the Ŵ op-
erator for all interior positions and omitting all single-V̂ or single-Ŵ brack-
etings. We should also remember that any Ŵ that appears next to a bra or
ket (on its inside) may then be replaced by V̂ :

〈Ŵ · · · = 〈V̂ · · · , · · · Ŵ 〉 = · · · V̂ 〉 . (2.131)

For example, for the fifth order contribution to the energy we get

E(5) = 〈V̂ R̂0Ŵ R̂0Ŵ R̂0Ŵ R̂0V̂ 〉 − 〈V̂ R̂0〈V̂ R̂0V̂ 〉R̂0Ŵ R̂0V̂ 〉
− 〈V̂ R̂0Ŵ R̂0〈V̂ R̂0V̂ 〉R̂0V̂ 〉 − 〈V̂ R̂0〈V̂ R̂0Ŵ R̂0V̂ 〉R̂0V̂ 〉

= 〈V̂ R̂0Ŵ R̂0Ŵ R̂0Ŵ R̂0V̂ 〉 − 〈V̂ R̂0V̂ 〉〈V̂ R̂0(R̂0Ŵ + Ŵ R̂0)R̂0V̂ 〉
− 〈V̂ R̂0Ŵ R̂0V̂ 〉〈V̂ R̂2

0V̂ 〉
= 〈V̂ R̂0Ŵ R̂0Ŵ R̂0Ŵ R̂0V̂ 〉 − E(2){〈Ψ(1)|Ψ(2)〉 + 〈Ψ(2)|Ψ(1)〉}

− E(3)〈Ψ(1)|Ψ(1)〉; (2.132)

note that we have here just four terms.
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2.4.7 Summary of formal RSPT results

We shall now collect the results for several orders of RSPT, giving both the
general result (in terms of R̂0) and the diagonal-case explicit formulas. The
first three orders of the wave-function contributions are:

Ψ(1) = R̂0V̂ |Φ〉 =
∑

i

′
|Φi〉

Vi0

D0i
, (2.133)

Ψ(2) = R̂0Ŵ R̂0V̂ |Φ〉 =
∑
i,j

′
|Φi〉

WijVj0

D0iD0j
, (2.134)

Ψ(3) = R̂0Ŵ R̂0Ŵ R̂0V̂ |Φ〉 − 〈Φ|V̂ R̂0V̂ |Φ〉R̂2
0V̂ |Φ〉

=
∑

i

′
|Φi〉


∑

j,k

′WijWjkVk0

D0iD0jD0k
− E(2) Vi0

D0i
2


 .

(2.135)

The energy formulas satisfy E(m) = 〈Φ|V̂ |Ψ(m−1)〉 , and the first six
orders are:

E(1) = 〈Φ|V̂ |Φ〉 = V00 , (2.136)

E(2) = 〈Φ|V̂ R̂0V̂ |Φ〉 =
∑

i

′V0iVi0

D0i
, (2.137)

E(3) = 〈Φ|V̂ R̂0Ŵ R̂0V̂ |Φ〉 =
∑
i,j

′V0iWijVj0

D0iD0j
, (2.138)

E(4) = 〈Φ|V̂ R̂0Ŵ R̂0Ŵ R̂0V̂ |Φ〉 − E(2)〈Ψ(1)|Ψ(1)〉

=
∑
ijk

′V0iWijWjkVk0

D0iD0jD0k
− E(2)

∑
i

′V0iVi0

D0i
2

(2.139)

E(5) = 〈Φ|V̂ R̂0Ŵ R̂0Ŵ R̂0Ŵ R̂0V̂ |Φ〉
− E(2)

{
〈Ψ(1)|Ψ(2)〉 + 〈Ψ(2)|Ψ(1)〉

}
− E(3)〈Ψ(1)|Ψ(1)〉

=
∑
ijkl

′V0iWijWjkWklVl0

D0iD0jD0kD0l

− E(2)
∑
ij

′V0iWijVj0

D0iD0j

(
1

D0i
+

1
D0j

)
− E(3)

∑
i

′V0iVi0

D0i
2 ,

(2.140)
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E(6) = 〈Φ|V̂ R̂0Ŵ R̂0Ŵ R̂0Ŵ R̂0Ŵ R̂0V̂ |Φ〉

− E(2)
{
〈Ψ(1)|Ψ(3)〉 + 〈Ψ(2)|Ψ(2)〉 + 〈Ψ(3)|Ψ(1)〉

}
− E(3)

{
〈Ψ(1)|Ψ(2)〉 + 〈Ψ(2)|Ψ(1)〉

}
− E(4)〈Ψ(1)|Ψ(1)〉

+ (E(2))2〈Ψ(1)|R̂0|Ψ(1)〉

=
∑

ijklm

′V0iWijWjkWklWlmVm0

D0iD0jD0kD0lD0m

− E(2)
∑
ijk

′V0iWijWjkVk0

D0iD0jD0k

(
1

D0i
+

1
D0j

+
1

D0k

)

− E(3)
∑
ij

′V0iWijVj0

D0iD0j

(
1

D0i
+

1
D0j

)

− E(4)
∑

i

′V0iVi0

D0i
2 + (E(2))

2∑
i

′V0iVi0

D0i
3 .

(2.141)

The steps in the derivation of the formula for E(6) are shown in Fig. 2.1.
The wave functions and energies at each order can also be expressed in

terms of lower-order quantities by substitution of the formulas for the lower-
order wave functions and energies. In the case of the energies the most
convenient forms are based on the Wigner formulas (2.36), (2.37). The
corresponding results take the forms:

Ψ(2) = R̂0Ŵ |Ψ(1)〉 , (2.142)

Ψ(3) = R̂0Ŵ |Ψ(2)〉 − E(2)R̂0|Ψ(1)〉 , (2.143)

Ψ(4) = R̂0Ŵ |Ψ(3)〉 − E(2)R̂0|Ψ(2)〉 − E(3)R̂0|Ψ(1)〉 , (2.144)

E(2) = 〈Φ|V̂ |Ψ(1)〉 , (2.145)

E(3) = 〈Ψ(1)|Ŵ |Ψ(1)〉 , (2.146)

E(4) = 〈Ψ(1)|Ŵ |Ψ(2)〉 − E(2)〈Ψ(1)|Ψ(1)〉 , (2.147)

E(5) = 〈Ψ(2)|Ŵ |Ψ(2)〉 − E(2)
{
〈Ψ(1)|Ψ(2)〉 + 〈Ψ(2)|Ψ(1)〉

}
− E(3)〈Ψ(1)|Ψ(1)〉 , (2.148)

E(6) = 〈Ψ(2)|Ŵ |Ψ(3)〉 − E(2)
{
〈Ψ(1)|Ψ(3)〉 + 〈Ψ(2)|Ψ(2)〉

}
− E(3)

{
〈Ψ(1)|Ψ(2)〉 + 〈Ψ(2)|Ψ(1)〉

}
− E(4)〈Ψ(1)|Ψ(1)〉 . (2.149)
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E(6) = 〈V̂ R̂0Ŵ R̂0Ŵ R̂0Ŵ R̂0Ŵ R̂0V̂ 〉 − 〈V̂ R̂0〈V̂ R̂0V̂ 〉R̂0Ŵ R̂0Ŵ R̂0V̂ 〉
〈V̂ R̂0Ŵ R̂0〈V̂ R̂0V̂ 〉R̂0Ŵ R̂0V̂ 〉 − 〈V̂ R̂0Ŵ R̂0Ŵ R̂0〈V̂ R̂0V̂ 〉R̂0V̂ 〉
〈V̂ R̂0〈V̂ R̂0Ŵ R̂0V̂ 〉R̂0Ŵ R̂0V̂ 〉 − 〈V̂ R̂0Ŵ R̂0〈V̂ R̂0Ŵ R̂0V̂ 〉R̂0V̂ 〉
− 〈V̂ R̂0〈V̂ R̂0Ŵ R̂0Ŵ R̂0V̂ 〉R̂0V̂ 〉 + 〈V̂ R̂0〈V̂ R̂0V̂ 〉R̂0〈V̂ R̂0V̂ 〉R̂0V̂ 〉
+ 〈V̂ R̂0〈V̂ R̂0〈V̂ R̂0V̂ 〉R̂0V̂ 〉R̂0V̂ 〉

= 〈V̂ R̂0Ŵ R̂0Ŵ R̂0Ŵ R̂0Ŵ R̂0V̂ 〉
− 〈V̂ R̂0V̂ 〉

{
〈V̂ R̂0|R̂0Ŵ R̂0Ŵ R̂0V̂ 〉 + 〈V̂ R̂0Ŵ R̂0|R̂0Ŵ R̂0V̂ 〉
+ 〈V̂ R̂0Ŵ R̂0Ŵ R̂0|R̂0V̂ 〉

}
− 〈V̂ R̂0Ŵ R̂0V̂ 〉

{
〈V̂ R̂0|R̂0Ŵ R̂0V̂ 〉 + 〈V̂ R̂0Ŵ R̂0|R̂0V̂ 〉

}
− 〈V̂ R̂0Ŵ R̂0Ŵ R̂0V̂ 〉〈V̂ R̂0|R̂0V̂ 〉 + 〈V̂ R̂0V̂ 〉2〈V̂ R̂ 3

0 V̂ 〉

+ 〈V̂ R̂0V̂ 〉〈V̂ R̂0|R̂0V̂ 〉2

= 〈V̂ R̂0Ŵ R̂0Ŵ R̂0Ŵ R̂0Ŵ R̂0V̂ 〉
− E(2)

{
〈Ψ(1)|Ψ(3) + E(2)R̂0Ψ(1)〉
+ 〈Ψ(2)|Ψ(2)〉 + 〈Ψ(3) + E(2)R̂0Ψ(1)|Ψ(1)〉

}
− E(3)

{
〈Ψ(1)|Ψ(2)〉 + 〈Ψ(2)|Ψ(1)〉

}
−

{
E(4) + E(2)〈Ψ(1)|Ψ(1)〉

}
〈Ψ(1)|Ψ(1)〉

+ (E(2))
2〈Ψ(1)|R̂0|Ψ(1)〉 + E(2)〈Ψ(1)|Ψ(1)〉2

.

Fig. 2.1. Steps in the derivation of the formula for E(6).

2.4.8 Extensivity of Rayleigh–Schrödinger perturbation theory

Rayleigh–Schrödinger perturbation theory (RSPT) is extensive order by
order. This is related to the fact that RSPT is a true order-by-order expan-
sion, unlike BWPT, which has the infinite-order energy in all denominators.
If we consider again the example of N noninteracting He atoms and take
the second-order energy expression obtained in subsection 2.4.3 for BWPT,
but replace the BWPT denominator (2.96)

E − E
(0)
i = ∆E − α + ε0 (2.150)

by the corresponding RSPT denominator,

E
(0)
0 − E

(0)
i = ε0 − α , (2.151)
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the second-order energy becomes

E(2) =
N |β|2
ε0 − α

, (2.152)

which is proportional to N .
A more complete demonstration of the extensivity of RSPT will await

development of its many-body form but, basically, this extensivity is due to
the fact that in a true order-by-order expansion the exact relationship

E(A + B) = E(A) + E(B) (2.153)

for the energy of a system made up of noninteracting subsystems A and B
must hold in each order.

2.5 Similarity transformation derivation of the formal
perturbation equations and quasidegenerate PT

The following alternative derivation of the RSPT equations (Van Vleck 1929,
Shavitt and Redmon 1980) is of interest because it is most easily generalized
to quasidegenerate PT (QDPT) and thus to a form of multireference PT
(MRPT).

Finding the eigenvalues and eigenfunctions of an operator Ĥ is equivalent
to finding a basis {Ψi} in which Ĥ is diagonal:

〈Ψi|Ĥ|Ψj〉 = Eiδij . (2.154)

If we have a representation of Ĥ in some other basis,

Hij = 〈Φi|Ĥ|Φj〉 , (2.155)

then we need the transformation operator Û that transforms the basis {Φi}
into the basis {Ψi},

|Ψi〉 = Û |Φi〉 =
∑

j

|Φj〉〈Φj |Û |Φi〉 =
∑

j

|Φj〉Uji . (2.156)

The inverse transformation is

|Φi〉 = Û−1|Ψi〉 , (2.157)

so that, if the {Φi} basis is orthonormal, we have

〈Φi|Û−1ĤÛ |Φj〉 = 〈Φi|Û−1Ĥ|Ψj〉
= 〈Φi|Û−1|Ψj〉Ej

= 〈Φi|Φj〉Ej = δijEj . (2.158)
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Thus we can obtain the eigenvalues of Ĥ as the elements of the (diagonal)
representation in the known orthonormal basis {Φi} of the effective Hamil-
tonian

Ĥeff = Û−1ĤÛ , (2.159)

which is a similarity transformation of the original Hamiltonian Ĥ. If both
the {Φi} and {Ψi} bases are orthonormal then the transformation connecting
them is unitary, Û † = Û−1, and the diagonalized representation of Ĥ can
be written in the form

Eiδij = 〈Ψi|Ĥ|Ψj〉 = 〈ÛΦi|Ĥ|ÛΦj〉 = 〈Φi|Û †ĤÛ |Φj〉 , (2.160)

so that the effective Hamiltonian can be expressed as

Ĥeff = Û †ĤÛ . (2.161)

Note that the original basis is any basis we choose, i.e., a known basis,
while the transformed basis is the desired set of eigenfunctions of Ĥ and is
unknown. Thus the problem of finding the eigenfunctions and eigenvalues
of Ĥ is equivalent to that of finding an operator Û such that the repre-
sentation of Û−1ĤÛ in some given basis {Φi} is diagonal. If we succeed
then 〈Φi|Û−1ĤÛ |Φi〉 are the eigenvalues and Û |Φi〉 are the corresponding
eigenfunctions.

If we are only interested in one particular eigensolution E0, |Ψ0〉, it is
enough to find a transformation Û that block-diagonalizes Ĥeff, so that

〈Φ0|Û−1ĤÛ |Φi〉 = 〈Φi|Û−1ĤÛ |Φ0〉 = 0 (i �= 0) ,

〈Φ0|Û−1ĤÛ |Φ0〉 = E0 ,
(2.162)

without being concerned about how Û transforms the other Φi among them-
selves. In this case there is considerable arbitrariness in the choice of Û . To
be more specific we shall use the projection operators of Section 2.3,

P̂ = |Φ0〉〈Φ0| , Q̂ = 1̂ − P̂ =
∑

i

′
|Φi〉〈Φi| , (2.163)

and write Û in the form

Û = P̂ Û P̂ + P̂ ÛQ̂ + Q̂Û P̂ + Q̂ÛQ̂

= |Φ0〉U00〈Φ0| + P̂ ÛQ̂ + Q̂Û P̂ + Q̂ÛQ̂ ,
(2.164)

where U00 = 〈Φ0|Û |Φ0〉.
The U00 and Q̂ÛQ̂ parts of Û are arbitrary, since they do not affect the

block diagonalization (U00 changes only the normalization of Ψ0, while Q̂ÛQ̂
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merely mixes the other Ψi (i �= 0) among themselves). If we wish Û to make
the minimum change (in the basis or in the effective Hamiltonian) essential
to achieve block diagonalization, it is natural to choose P̂ Û P̂ = P̂ (i.e.,
U00 = 1), Q̂ÛQ̂ = Q̂, so that

P̂ Û P̂ + Q̂ÛQ̂ = 1̂. (2.165)

Then

Û = 1̂ + P̂ ÛQ̂ + Q̂Û P̂ (2.166)

and

Ψ0 = ÛΦ0 = Û P̂Φ0 = Φ0 + Q̂Û P̂Φ0 , (2.167)

so that Q̂Û P̂Φ0 is the perturbative correction to Φ0 (using intermediate
normalization).

The operator that, when operating on a zero-order function Φ0, produces
the corresponding perturbed function Ψ0 is called the wave operator and
is commonly denoted by Ω. (A more general definition relevant to quasi-
degenerate PT will be given at the end of this section.) Only the ΩP̂ part
of Ω is of interest, the ΩQ̂ part being left undefined. In the persent case we
have

ΩP̂ = Û P̂ = P̂ + Q̂Û P̂ . (2.168)

When ΩP̂ operates on any function Φ that is not orthogonal to Φ0 we obtain
a function proportional to Ψ0,

ΩP̂ |Φ〉 = Û P̂ |Φ〉 = Û |Φ0〉〈Φ0|Φ〉 = |Ψ0〉〈Φ0|Φ〉 . (2.169)

Using the notation of (2.54), Û can be written in the form

Û = ÛD + ÛX,

ÛD = 1̂, Û = 1̂ + ÛX ,
(2.170)

and so we are looking for ÛX such that

Ĥeff = Û−1ĤÛ = Ĥeff
D , Ĥeff

X = 0̂ (2.171)

(i.e. such that Ĥeff is block diagonal). To proceed further, we first partition
the Hamiltonian as

Ĥ = Ĥ0 + V̂ , (2.172)

where Ĥ0 is diagonal (〈Φi|Ĥ0|Φj〉 = E
(0)
i δij), and then set

Ĥ0 = (Ĥ0)D , (Ĥ0)X = 0 ,

ĤD = Ĥ0 + V̂D, ĤX = V̂X .
(2.173)
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It is also convenient to define an operator Ŵ as the correction to Ĥ0 needed
to obtain Ĥeff:

Ĥeff = Ĥ0 + Ŵ . (2.174)

(This notation is unrelated to Ŵ = V̂ −E(1) in previous sections.) We have

Ŵ = ŴD , ŴX = 0 ,

P̂ Ŵ P̂ = P̂ ĤeffP̂ − P̂ Ĥ0P̂ = (E0 − E
(0)
0 )P̂ = ∆E0P̂ ,

(2.175)

and P̂ Ŵ P̂ , called the level-shift operator, provides the desired energy cor-
rection.

In order to solve for Û and Ŵ we rewrite Eq. (2.159) for Ĥeff in the form

ÛĤeff = ĤÛ , (2.176)

or

ÛĤ0 + ÛŴ = Ĥ0Û + V̂ Û . (2.177)

Using Û = 1̂ + ÛX , we get

Ĥ0 + ÛXĤ0 + Ŵ + ÛXŴ = Ĥ0 + Ĥ0ÛX + V̂ + V̂ ÛX ,

that is,

Ĥ0ÛX − ÛXĤ0 = −V̂ − V̂ ÛX + Ŵ + ÛXŴ . (2.178)

The diagonal part of this equation is

0̂ = −V̂D − V̂XÛX + Ŵ

or

Ŵ = V̂D + V̂XÛX , (2.179)

while the off-diagonal part is

[Ĥ0, ÛX] = −V̂X − V̂DÛX + ÛXŴ . (2.180)

If we expand in orders of V̂ ,

ÛX = Û
(1)
X + Û

(2)
X + · · · , Ŵ = Ŵ (1) + Ŵ (2) + · · · (2.181)

(the zero-order parts are zero, since they have been left out of ÛX = Û − 1̂
and Ŵ = Ĥeff − Ĥ0), we have[

Ĥ0, Û
(1)
X

]
= −V̂X ,

[
Ĥ0, Û

(m)
X

]
= −V̂DÛ

(m−1)
X +

m−1∑
l=1

Û
(l)
X Ŵ (m−l) (m ≥ 2) ,

(2.182)
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and

Ŵ (1) = V̂D ,

Ŵ (m) = V̂XÛ
(m−1)
X (m ≥ 2) .

(2.183)

Equation (2.182) for Û
(m)
X can be rewritten, using Ŵ (1) = V̂D, in the form

[
Ĥ0, Û

(m)
X

]
= −

[
V̂D, Û

(m−1)
X

]
+

m−2∑
l=1

Û
(l)
X Ŵ (m−l) (m ≥ 2) (2.184)

(where the sum is empty for m = 2).
In order to solve an equation of the form

[Ĥ0, ÛX] = Â , (2.185)

where Â is any operator expression satisfying Â = ÂX, we proceed as follows:

Q̂ÂP̂ = Q̂[Ĥ0, ÛX]P̂ ,

= Q̂Ĥ0Q̂Û P̂ − Q̂Û P̂ Ĥ0P̂ ,

= (Q̂Ĥ0Q̂)(Q̂Û P̂ ) − (Q̂Û P̂ )E(0)
0 ,

so that

Q̂Û P̂ = −Q̂
(
E

(0)
0 − Q̂Ĥ0Q̂

)−1
Q̂ÂP̂

= −R̂0ÂP̂ , (2.186)

where R̂0 is the zero-order resolvent operator R̂0(E
(0)
0 ) for state 0,

R̂0 = Q̂
(
E

(0)
0 − Q̂Ĥ0Q̂

)−1
Q̂ =

Q̂

E
(0)
0 − Ĥ0

. (2.187)

Applying this result to (2.180), i.e. putting Â = −V̂X − V̂DÛX + ÛXŴ , we
have

Q̂Û P̂ = R̂0(V̂X + V̂DÛX − ÛXŴ )P̂

= R̂0V̂ P̂ + R̂0V̂ Q̂Û P̂ − R̂0Û P̂ Ŵ P̂ . (2.188)

Equating equal orders of the perturbation on both sides, we can now write
(2.182) and (2.183) in the form

Q̂Û (1)P̂ = R̂0V̂ P̂ ,

Q̂Û (m)P̂ = R̂0V Q̂Û (m−1)P̂ −
m−1∑
l=1

R̂0Û
(l)P̂ Ŵ (m−l)P̂ (m ≥ 2)

(2.189)
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and

P̂ Ŵ (1)P̂ = P̂ V̂ P̂ ,

P̂ Ŵ (m)P̂ = P̂ V̂ Q̂Û (m−1)P̂ (m ≥ 2) .
(2.190)

These equations for Q̂Û P̂ and P̂ Ŵ P̂ determine the perturbed wave function
through

Ψ0 = Φ0 + Q̂Û P̂Φ0 (2.191)

and the perturbed energy through (2.175). Using (2.188), the wave operator
is determined from (cf. (2.168))

ΩP̂ = P̂ + R̂0(V̂ + V̂ Q̂Û − Û P̂ Ŵ )P̂ . (2.192)

Only the Q̂Û (m)P̂ part (corresponding to a column) of Û
(m)
X and the

P̂ Ŵ (m)P̂ part (corresponding to an element) of Ŵ (m) are ever needed. Re-
peated substitution of the lower-order Q̂Û P̂ equations into the higher-order
Û and Ŵ equations gives the usual perturbation theory expressions, for
example,

P̂ Ŵ (2)P̂ = P̂ V̂ Q̂Û (1)P̂ = P̂ V̂ R̂0V̂ P̂ , (2.193)

which corresponds to

E
(2)
0 = 〈Φ0|V̂ R̂0V̂ |Φ0〉. (2.194)

The principal merit of this derivation is that it can easily be generalized to
a case in which more than one zero-order states are to be handled together
as part of the P̂ block, i.e. in degenerate or quasidegenerate perturbation
theory (QDPT). In that case

P̂ =
∑
α

|Φα〉〈Φα| , Q̂ = 1̂ − P̂ =
∑

i

|Φi〉〈Φi| , (2.195)

where the Greek subscripts sum over the model states (the quasidegenerate
set of zero-order states) and the Roman subscripts over all others. The
PT equations then have the same form as before (but with the modified
definition of P̂ , Q̂) and they define a model-space matrix P̂ Ŵ P̂ , from which
we may obtain the (non-Hermitian) effective Hamiltonian matrix

P̂ ĤeffP̂ = P̂ Ĥ0P̂ + P̂ Ŵ P̂ , (2.196)

the transformation matrix Q̂Û P̂ and the wave operator ΩP̂ = P̂ + Q̂Û P̂ .
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A more familiar form of the QDPT equations, known as the generali-
zed Bloch equation (Lindgren 1974, Kvasnička 1974, 1977b, Lindgren 1978,
Lindgren and Morrison 1986), is easily recovered from (2.179), (2.180):

[ÛX , Ĥ0] = (V̂X + V̂DÛX) − ÛX(V̂D + V̂X ÛX) ,

Q̂[Ω, Ĥ0]P̂ = Q̂(V̂ Ω)P̂ − Q̂ΩP̂ (V̂ Ω)P̂ ,
(2.197)

using ΩP̂ = Û P̂ = P̂ + Q̂Û P̂ . Also, since P̂ΩP̂ = P̂ and P̂ [Ω, Ĥ0]P̂ = 0,
we may add

P̂ [Ω, Ĥ0]P̂ = P̂ V̂ ΩP̂ − P̂ΩP̂ V̂ ΩP̂

to (2.197) to get the generalized Bloch equation in the form

[Ω, Ĥ0]P̂ = V̂ ΩP̂ − ΩP̂ V̂ ΩP̂ (2.198)

(see Lindgren and Morrison 1986). This equation is a generalization of the
original Bloch equation (Bloch 1958, Bloch and Horowitz 1958) of degenerate
perturbation theory, in which the model states are exactly degenerate in
zero order, which is often the case for calculations on open-shell states. The
QDPT approach and the generalized Bloch equations are discussed in detail
in Chapter 8.

While the PT equations (2.182), (2.183) have the same general form in
the quasidegenerate and degenerate cases as in the nondegenerate case, their
solution in the quasidegenerate case is complicated by the fact that instead
of a single resolvent R̂0 we now have a set of resolvents

R̂0(E(0)
α ) ≡ R̂α =

Q̂

E
(0)
α − Ĥ0

(2.199)

for all the model states. The solutions are given by (compare Eqs. (2.189,
2.190))

U
(1)
iα = Ri

αViα ,

U
(m)
iα =

∑
j

Ri
αVijU

(m−1)
jα −

m−1∑
l=1

∑
β

Ri
αU

(l)
iβ W

(m−l)
βα (m ≥ 2) , (2.200)

and

W
(1)
αβ = Vαβ ,

W
(m)
αβ =

∑
i

VαiU
(m−1)
iβ (m ≥ 2). (2.201)

In (2.200) we have

Ri
α = 〈Φi|R̂α|Φi〉 . (2.202)



2.6 Other approaches 53

When the Q̂Û P̂ and P̂ Ŵ P̂ matrices have been determined to satisfactory
accuracy, the final solutions of the quasidegenerate (or degenerate) problem
are determined by solving the non-Hermitian eigenvalue problem.∑

β

Ĥeff
αβCβγ = CαγEγ , (2.203)

to complete the diagonalization of the P -space. This gives the final energies
Eγ and the transformation matrix C. The wave functions are then

|Ψγ〉 =
∑
β

Û |Φβ〉Cβγ

=
∑
β

(
|Φβ〉 +

∑
i

|Φi〉Uiβ

)
Cβγ . (2.204)

It is therefore clear that the wave operator can be more generally defined
as the operator that, when it operates on the manifold of model states,
generates the manifold of perturbed states; a diagonalization of the effec-
tive Hamiltonian P̂ Ĥeff P̂ is then needed to obtain the transformation that
converts the states generated by ΩΦα into the exact eigenstates of Ĥ.

2.6 Other approaches

At this point it is appropriate to begin consideration of the many-body form
of RSPT, where some important simplifications and cancellations will ap-
pear through the use of diagrammatic techniques. Actually, there is another
important variant of the derivation of the formal equations of PT: this uses
time-dependent PT (see e.g. Raimes (1972) or March, Young and Sampan-
thar (1967)). This variant was in fact used in the original derivation of the
many-body form of perturbation theory (Brueckner 1955, Goldstone 1957),
but this derivation cannot be presented without the introduction of several
additional concepts that complicate the presentation considerably and so it
will not be discussed further in this book.
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Second quantization

3.1 Background

Second-quantization techniques evolved primarily for problems in which the
number of particles is not fixed or known and in the context of independent-
particle models (such as the Hartree–Fock model). Such techniques provide
a method of representing independent-particle-model wave functions (i.e.
Slater determinants) and operators in a compact convenient notation and
also provide an efficient way of manipulating such functions and operators.

The second-quantization notation assumes the existence of an unspecified
number of functions in a given fixed one-particle basis, say

{φi} = {φ1, φ2, . . .} . (3.1)

In general, the functions {φi} are spinorbitals, very often the Hartree–
Fock spinorbitals. To avoid complications, we assume that the basis is
orthonormal ,

〈φi|φj〉 = δij . (3.2)

The number of functions in the basis need not appear explicitly in the for-
malism (but of course will affect any computation). The given one-particle
basis generates Hilbert spaces for N = 1, 2, . . . particles, for which the basis
functions are products of N one-particle basis functions. However, since
we are dealing with fermions, we will restrict the many-particle functions
to be antisymmetric and thus assume a many-particle basis constructed of
Slater determinants made up of the one-particle basis functions. The to-
tality of the antisymmetric Hilbert spaces for N = 1, 2, . . . is often referred
to as a Fock space (Kutzelnigg 1982, 1984, Kutzelnigg and Koch 1983),
and we are looking for a representation of functions and operators in this
Fock space, without explicitly specifying N . Obviously, the ordinary form

54



3.2 Creation and annihilation operators 55

of the Hamiltonian,

Ĥ =
N∑

µ=1

ĥµ +
N∑

µ<ν

v̂µν (3.3)

where ĥµ and v̂µν are the one-particle and two-particle terms in Ĥ and µ, ν

are particle labels, does not satisfy this requirement because N appears in
the summation limits.

3.2 Creation and annihilation operators

3.2.1 Definitions

We begin by considering the representation of a normalized Slater determi-
nant

Φ = Φijk...z ≡ Aφiφjφk · · ·φz ≡ |φiφjφk · · ·φz〉 ≡ | ijk · · · z〉 , (3.4)

where A is the antisymmetrizer and each φ is a spinorbital in our one-particle
basis. The various forms of (3.4) are equivalent notations for the same
function, and we shall normally use one of the last two forms. The Slater
determinant (SD) Φ is represented in second-quantized form by specifying
the occupancies (or occupation numbers) n1, n2, . . . of the basis spinorbitals
φ1, φ2, . . . in the determinant. Obviously,

ni(Φ) =

{
0 if φi is empty (not present) in the SD Φ

1 if φi is occupied (present) in the SD Φ
(i = 1, 2, . . .) .

(3.5)
The determinant itself (and various operators on it) are represented in terms
of a set of creation and annihilation operators. The notation for these varies:

creation operator for spinorbital φi, X̂†
i , â†i ; ĉ†i , î†;

annihilation operator for spinorbital φi, X̂i, âi, ĉi, î .

Here we shall use â†i , âi and, when there is no possibility of confusion, î†, î.
They are defined in terms of their action on SDs:

â†i |jk · · · z〉 = | ijk · · · z〉 ,

âi| ijk · · · z〉 = |jk · · · z〉 .
(3.6)

It is convenient to arrange the spinorbitals in an SD in lexical order as

| ijk · · · z〉 , where i < j < k < · · · < z ,
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and therefore it is necessary to determine the effects of the creation and an-
nihilation operators when the affected orbital is not (or is not being placed)
at the beginning of the SD. Then, because

P̂ | ijk · · · z〉 = (−1)σ(P̂ )| ijk · · · z〉 , (3.7)

where P̂ permutes the i, j, k, . . . , z and σ(P̂ ) is the parity of the permutation
P̂ , we have

â†p| ijk · · · z〉 = (−1)ηp | ijk · · · p · · · z〉 ,

âp| ijk · · · p · · · z〉 = (−1)ηp | ijk · · · z〉 ,
(3.8)

where ηp is the number of orbitals preceding φp in the SD (after the opera-
tion, for â†p, and before the operation, for âp). We also have

â†i |Φ〉 = 0 if ni(Φ) = 1 ,

âi|Φ〉 = 0 if ni(Φ) = 0 .
(3.9)

We can now describe an SD as the result of the successive operation of
several â†p on the vacuum SD, | 〉, which contains no spinorbitals (N = 0):

â†i â
†
j â

†
k · · · â

†
z| 〉 = | ijk · · · z〉 . (3.10)

Next, consider the matrix elements of â†p and âp between two SDs Φ and
Φ′. It is clear (owing to the orthonormality of the spinorbitals) that

〈Φ′|âp|Φ〉 =

{
±1 if np(Φ) = 1, np(Φ′) = 0, ni(Φ) = ni(Φ′) (i �= p) ,

0 otherwise .

(3.11)
That is, the matrix element is nonzero only if Φ and Φ′ have the same orbital
occupancies except that φp has an electron in Φ but not in Φ′ (thus Φ′ has
one fewer electron than Φ). The sign depends on the relative order of the
spinorbitals in the two SDs. Let us order the orbitals the same way in Φ
and Φ′, except that in Φ we put φp at the beginning,

Φ = |pij · · · z〉 ,

Φ′ = | ij · · · z〉
(3.12)

(at most, this introduces a factor of −1 in the matrix element). Then the
matrix element is

〈ij · · · z|âp|pij · · · z〉 = 〈ij · · · z| ij · · · z〉 = 1 . (3.13)

We get the same answer by operating with â†p on the bra:

〈â†pij · · · z|pij · · · z〉 = 〈pij · · · z|pij · · · z〉 = 1 . (3.14)
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If Φ and Φ′ do not satisfy the above occupancy conditions then both matrix
elements will vanish. Therefore, in all cases,

〈Φ′|âp|Φ〉 = 〈â†pΦ′|Φ〉 (3.15)

and similarly

〈Φ′|â†p|Φ〉 = 〈âpΦ′|Φ〉 . (3.16)

This shows that â†p is the operator adjoint to âp and so justifies the notation.
In general, we can write

〈ij · · · z|âp = 〈â†pij · · · z| = 〈pij · · · z| ,
〈pij · · · z|â†p = 〈âppij · · · z| = 〈ij · · · z| ,

(3.17)

so that â†p and âp act as annihilation and creation operators, respectively,
when acting to the left.

The operator product â†pâp is particularly interesting:

â†pâp|Φ〉 = np(Φ)|Φ〉 =

{
|Φp〉 if φp is in Φ ,

0 otherwise .
(3.18)

This combination is called the number operator for orbital (or spinorbital)
φp, is written n̂p, so that

n̂p = â†pâp , (3.19)

and has all the SDs as eigenfunctions, with eigenvalues equal to the corre-
sponding occupation numbers (0 or 1).

3.2.2 Anticommutation relations

Now we shall derive anticommutation relations for the creation and annihi-
lation operators. Consider the following:

â†pâ
†
q|ijk · · · 〉 = |pqijk · · · 〉

â†qâ
†
p|ijk · · · 〉 = |qpijk · · · 〉 = −|pqijk · · · 〉 .

(3.20)

This is true for any SD |ijk · · · 〉; if φp or φq already exists in |ijk · · · 〉, both
products will give zero. Therefore, in general,

â†pâ
†
q = −â†qâ

†
p ,

[â†p, â
†
q]+ ≡ â†pâ

†
q + â†qâ

†
p = 0̂ ,

(3.21)

where [Â, B̂]+ ≡ ÂB̂ + B̂Â is the anticommutator of Â and B̂ and is some-
times written as {Â, B̂}. Note that if p = q the relation still holds, since
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then â†pâ
†
p = 0̂ and thus [â†p, â

†
p]+ = 0̂. Note also that [Â, B̂]+ = [B̂, Â]+,

unlike the ordinary commutator, for which [Â, B̂] = −[B̂, Â].
Next consider the following:

âpâq|qpij · · · 〉 = âp|pij · · · 〉 = |ij · · · 〉 ,

âqâp|qpij · · · 〉 = −âqâp|pqij · · · 〉 = −âq|qij · · · 〉 = −|ij · · · 〉 .
(3.22)

If φp and/or φq are in the interior of the SD then they can always be brought
forward to the beginning with, at most, a change of sign, the same change
in both cases. Furthermore, if φp and/or φq are not present in the SD then
both lines give zero. Thus, in general,

âpâq = −âqâp (3.23)

or

[âp, âq]+ = 0̂ . (3.24)

Now consider â†p and âq:

â†pâq|qij · · · 〉 = â†p|ij · · · 〉 = |pij · · · 〉 . (3.25)

This operator product replaces φq by φp, even if φp was in the interior of
the SD, since

â†pâq|ij · · · q · · · 〉 = (±1)2|ij · · · p · · · 〉 = |ij · · · p · · · 〉 . (3.26)

However,

âqâ
†
p|qij · · · 〉 = âq|pqij · · · 〉 = −âq|qpij · · · 〉 = −|pij · · · 〉 (p �= q)

(3.27)
(this combination also replaces φq by φp, but with a change of sign), and
thus

[â†p, âq]+ = 0̂ (p �= q). (3.28)

If p = q we have

â†pâp|pij · · · 〉 = |pij · · · 〉 ,

âpâ
†
p|pij · · · 〉 = 0 ,

(3.29)

and if φp does not appear in the SD,

â†pâp|ij · · · 〉 = 0 ,

âpâ
†
p|ij · · · 〉 = âp|pij · · · 〉 = |ij · · · 〉 .

(3.30)

Thus in all cases (
â†pâp + âpâ

†
p

)
| · · · 〉 = | · · · 〉 , (3.31)
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and therefore [
â†p, âp

]
+

=
[
âp, â

†
p

]
+

= 1̂ . (3.32)

To summarize, the anticommutation relations for the creation and annihila-
tion operators are:

[âp, âq]+ = 0̂ ,

[â†p, â
†
q]+ = 0̂ ,

[â†p, âq]+ = [âp, â
†
q]+ = δ̂pq ,

(3.33)

where δ̂pq is the Kronecker-delta operator. (More generally, if the spinor-
bitals are not orthonormal then one obtains [â†p, âq]+ = 〈p|q〉.)

3.2.3 Representation of operators

Next we want to consider the representation of general operators and matrix
elements. As previously noted, any SD can be represented as the result of
the operation of a string of creation operators on the vacuum state,

|ij · · · 〉 = â†i â
†
j · · · | 〉 , (3.34)

we also have (using the adjointness of â†i and âi),

〈ij · · · | = 〈a†ia
†
j · · · | = 〈 | · · · âj âi . (3.35)

Any annihilation operator operating on the vacuum state gives zero,

âi| 〉 = 0 , (3.36)

and similarly

〈 |â†i = 〈âi| = 0 . (3.37)

For consistency, the vacuum state is taken to be normalized,

〈 | 〉 = 1 , (3.38)

as seen, for example, from

1 = 〈i|i〉 = |âiâ
†
i | 〉

= 〈 |
(
[âi, â

†
i ]+ − â†i âi

)
| 〉

= 〈 |1̂| 〉 − 〈 |â†i âi| 〉
= 〈 | 〉 − 0 = 〈 | 〉 . (3.39)
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In general, if we have two SDs

|I〉 = |i1i2 · · · iN 〉 = î†1î
†
2 · · · î

†
N | 〉 ,

|J〉 = |j1j2 · · · jN 〉 = ĵ†1ĵ
†
2 · · · ĵ

†
N | 〉

(3.40)

then, using the more compact notation î for âi and î† for â†i ,

〈I|J〉 = 〈 |̂iN · · · î2î1ĵ†1ĵ
†
2 · · · ĵ

†
N | 〉 . (3.41)

If we now move î1 all the way to the right (N transpositions), there are two
possible outcomes:

1. No jp is the same as i1, and therefore

〈I|J〉 = 〈 |̂iN · · · î2ĵ†1ĵ
†
2 · · · ĵ

†
N î1| 〉(−1)N = 0 , (3.42)

since î1| 〉 = 0.
2. One of the j’s, say jp, is the same as i1, so that

î1ĵ
†
p = [̂i1, ĵ†p]+ − ĵ†p î1 = δ̂i1jp − ĵ†p î1 = 1̂ − ĵ†p î1 (i1 = jp) (3.43)

and

〈I|J〉 = 〈 |̂iN · · · î2ĵ†1ĵ
†
2 · · · ĵ

†
p−1ĵ

†
p+1 · · · ĵ

†
N | 〉(−1)p−1 − 0 (3.44)

(the last term is zero because we have an î1 left over that goes all the
way to the right).

If we next do this for î2 and then î3 etc., we get either zero, if there are any
iq without a matching jp, or (−1)τ , if the two sets of indices i1, i2, . . . , iN
and j1, j2, . . . , jN are identical except possibly for their order, in which case
τ is the parity of the line-up permutation, which permutes, say, the j’s to
match the i’s.

The foregoing provides a demonstration of how matrix elements involv-
ing creation and annihilation operators can be manipulated. An important
element of such manipulations is commuting enough operators to bring all
annihilation operators to the right of all creation operators, since

〈 |â†i â
†
j · · · âpâq| 〉 = 0 . (3.45)

Now consider a symmetric one-electron operator

F̂ =
N∑

µ=1

f̂µ , (3.46)

where µ identifies the electron on which f̂µ operates, and the f̂µ’s are iden-
tical except for the identity of the electron on which each operates (thus F̂
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operates in the same way on all electrons, which is why it is called a sym-
metric one-electron operator). Now consider a matrix element of F̂ between
two SDs:

〈I|F̂ |J〉 = 〈i1i2 · · · iN |F̂ |j1j2 · · · jN 〉
=

∑
µ

〈i1i2 · · · iN |f̂µ|j1j2 · · · jN 〉

=
∑

µ

〈φi1(1)φi2(2) · · ·φiN (N)|f̂µ

∑
P̂

(−1)σ(P̂ )|P̂ φj1(1)φj2(2) · · ·φjN (N)〉 ,

(3.47)

where the bra and ket in the last line each comprise a specific spinorbital
product, not a determinant, and where P̂ permutes the j’s and σ(P̂ ) is the
parity of P̂ . The well-known result is that

〈I|F̂ |J〉 =
N∑

k=1

〈ik|f̂ |ik〉(−1)σ(P̂ ) if there exists a permutation P̂
such that P̂ j1j2 · · · jN = i1i2 · · · iN ,

〈I|F̂ |J〉 = 〈ik|f̂ |i′k〉(−1)σ(P̂ ) if there exists a permutation P̂ such that
P̂ j1j2 · · · jN = i1i2 · · · i′k · · · iN (i′k �= ik)
(one noncoincidence) ,

〈I|F̂ |J〉 = 0 otherwise (two or more noncoincidences) .

(3.48)

It is easy to verify that the same result will be obtained for the operator∑
k,l

〈k|f̂ |l〉â†kâl =
∑
k,l

fklâ
†
kâl , (3.49)

where the sums are over all the spinorbitals in the basis. For simplicity, let
us assume that the two sets of indices i1, i2, . . . , iN and j1, j2, . . . , jN have
been “lined-up” in such a way that ip = jp for as many p = 1, 2, . . . , N as
possible. Then, if there are zero noncoincidences,〈

I

∣∣∣∣∑
k,l

fklâ
†
kâl

∣∣∣∣I
〉

=
∑
k,l

fkl〈I|â†kâl|I〉

=
∑
k,l

fklδklnl(I)

=
∑
k∈I

fkk =
N∑

p=1

〈ip|f̂ |ip〉 , (3.50)

since k �= l creates a noncoincidence between 〈I| and â†kâl|I〉. For one
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noncoincidence ip �= jp, the only term in the k, l sum that will make 〈I|
coincide with â†kâl|J〉 will be l = jp, k = ip, so that

〈
I

∣∣∣∣ ∑
k,l

fklâ
†
kâl

∣∣∣∣J
〉

=
∑
k,l

fkl〈I|â†kâl|J〉

= fipjp〈I |̂i†pĵp|J〉
= fipjp = 〈ip|f̂ |jp〉 . (3.51)

For two or more noncoincidences there is no single pair â†kâl that will
render 〈I|â†kâl|J〉 �= 0, so we get zero for the matrix element. Thus, all
matrix elements of F̂ =

∑N
µ=1 f̂µ within the Fock space generated by the

one-electron basis are the same as those of
∑

k,l fklâ
†
kâl and within that space

we can write

F̂ =
N∑

µ=1

f̂µ =
∑
k,l

〈k|f̂ |l〉â†kâl . (3.52)

Similarly, for a symmetric two-electron operator

Ĝ =
N∑

µ<ν

ĝµν = 1
2

N∑
µ�=ν

ĝµν

we obtain

Ĝ = 1
2

∑
i,j,k,l

〈i(1)j(2)|ĝ12|k(1)l(2)〉â†i â
†
j âlâk . (3.53)

Noting the order of the arguments (1, 2) in the matrix element and the order
of the annihilation operators âlâk, we have

â†i â
†
j âlâk = (â†i (â

†
j âl)âk) = (â†i âk)(â

†
j âl) − δjkâ

†
i âl , (3.54)

using the anticommutation relations (3.33) with two transpositions. This
form of the operators is independent of N .

To show that this form for the two-body operator is correct, consider first
the zero-noncoincidence case (perfectly lined up),

〈I|Ĝ|I〉 = 1
2

∑
ijkl

〈ij|ĝ|kl〉〈I|â†i â
†
j âlâk|I〉 . (3.55)
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The only nonzero contributions will be for l and k values that appear in |I〉,
say k = ip, l = iq (p < q):

〈ij|ĝ|ipiq〉 〈I|â†i â
†
j âip âiq |i1i2 · · · ip · · · iq · · · 〉

= 〈ij|ĝ|ipiq〉〈I|â†i â
†
j |i1i2 · · · 〉(−1)(p−1)+(q−2) . (3.56)

To get a nonzero result, â†i â
†
j â

†
i â

†
j must restore ip and iq to their proper

places; this can be done in two ways:

1. set i = ip, j = iq, resulting in

〈ipiq|ĝ|ipiq〉〈I|i1i2 · · · ip · · · iq · · · 〉(−1)(p−1)+(q−2)(−1)(p−1)+(q−2)

= 〈ipiq|ĝ|ipiq〉 ; (3.57)

2. set i = iq, j = ip, resulting in

〈iqip|ĝ|ipiq〉〈I|i1i2 · · · ip · · · iq · · · 〉(−1)(p−1)+(q−2)(−1)(p−1)+(q−1)

= −〈iqip|ĝ|ipiq〉 = −〈ipiq|ĝ|iqip〉 . (3.58)

This same pair of contributions will also be obtained for k = iq, l = ip. The
total matrix element can be written in either of two forms

〈I|Ĝ|I〉 = 1
2

∑
i∈I

∑
j∈I

(〈ij|ĝ|ij〉 − 〈ij|ĝ|ji〉)

=
∑
i<j

(i∈I,j∈I)

(〈ij|ĝ|ij〉 − 〈ij|ĝ|ji〉) . (3.59)

The case i = j does not contribute because of the cancellation of the direct
and exchange terms in this case. It is convenient to define the antisymmetric
integral

〈ij|ĝ|kl〉A ≡ 〈ij|ĝ|kl〉 − 〈ij|ĝ|lk〉 , (3.60)

so that

〈I|Ĝ|I〉 = 1
2

∑
i∈I

∑
j∈I

〈ij|ĝ|ij〉A . (3.61)

This is, of course, the same as the ordinary result (the Slater–Condon rules)
obtained by first-quantized techniques.

Similarly, for a single noncoincidence ip �= i′p, i.e. for

|I〉 = |i1i2 · · · ip · · · 〉 ,

|I ′〉 = |i1i2 · · · i′p · · · 〉 ,
(3.62)
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we get contributions to 〈I ′|Ĝ|I〉 from â†i â
†
j âlâk as follows:

for i = i′p, k = ip, j = l = iq (q �= p), 〈i′piq|ipiq〉 ;

for i = i′p, l = ip, j = k = iq (q �= p), −〈i′piq|iqip〉 ;

for j = i′p, l = ip, i = k = iq (q �= p), 〈iqi′p|iqip〉 ;

for j = i′p, k = ip, i = l = iq (q �= p), −〈iqi′p|ipiq〉 .

(3.63)

Here the first two terms are equal to the last two terms, respectively. So the
total result is

〈I ′|Ĝ|I〉 = 2 × 1
2

∑
j∈I

(
〈i′pj|ĝ|ipj〉 − 〈i′pj|ĝ|jip〉

)
=

∑
j∈I

〈i′pj|ĝ|ipj〉A (single noncoincidence). (3.64)

Again, the terms in which j = ip or j = i′p will cancel, since

〈i′pip|ĝ|ipip〉A = 〈i′pip|ĝ|ipip〉 − 〈i′pip|ĝ|ipip〉 = 0 ,

〈i′pi′p|ĝ|ipi′p〉A = 〈i′pi′p|ĝ|ipi′p〉 − 〈i′pi′p|ĝ|i′pip〉 = 0 ,
(3.65)

and the result agrees with the Slater–Condon rules for a single noncoinci-
dence. For two noncoincidences jp �= i′p, jq �= i′q we get

〈I ′|Ĝ|I〉 = 〈i′pi′q|ĝ|ipiq〉A (two noncoincidences) , (3.66)

and for more than two noncoincidences we get zero, also in agreement with
the Slater–Condon rules.

The electronic Hamiltonian consists of one- and two-electron parts,

Ĥ = Ĥ1 + Ĥ2 , (3.67)

with

Ĥ1 =
∑

µ

ĥµ , Ĥ2 =
∑
µ<ν

v̂µν , (3.68)

where (using atomic units)

ĥµ = −1
2∇

2
µ −

∑
A

ZA

rµA
, v̂µν =

1
rµν

. (3.69)

The second-quantized form of the Hamiltonian is then

Ĥ = Ĥ1 + Ĥ2 =
∑
i,j

〈i|ĥ|j〉â†i âj + 1
2

∑
ijkl

〈ij|v̂|kl〉â†i â
†
j âlâk , (3.70)
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where

〈ij|v̂|kl〉 ≡ 〈i(1)j(2)|v̂12|k(1)l(2)〉 . (3.71)

The antisymmetric two-electron integral for v̂ is often abbreviated as follows:

〈ij|v̂|kl〉 − 〈ij|v̂|lk〉 = 〈ij|v̂|kl〉A ≡ 〈ij‖kl〉 . (3.72)

Since

〈ij‖kl〉 = −〈ij‖lk〉 , âlâk = −âkâl , (3.73)

we can also write the second-quantized Hamiltonian in the form

Ĥ =
∑
ij

hij â
†
i âj + 1

4

∑
ijkl

〈ij‖kl〉â†i â
†
j âlâk . (3.74)

This form is the one we shall find most convenient to use in the subsequent
development.

The second-quantized forms of the operators are the second-quantization
analogs of the forms

Â =
∑
I,J

|I〉〈I|Â|J〉〈J | =
∑
I,J

|I〉AIJ〈J | , (3.75)

except that in the first-quantized form the number of electrons appears
through the number of spin orbitals in each of |I〉 and |J〉, while the second-
quantized form is independent of N .

3.2.4 Invariance under unitary transformations

Next we wish to show the invariance of the second-quantized form of an
operator under a unitary transformation of the basis. Let the transformation
be effected by a unitary operator Û , so that

|φ′
i〉 = Û |φi〉 =

∑
j

|φj〉〈φj |Û |φi〉

=
∑

j

|φj〉Uji , (3.76)

where

Uji = 〈φj |Û |φi〉 ,

Û−1 = Û † ,(
Û−1

)
ij

= U∗
ji .

(3.77)
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Define the row vectors

|φ〉 =
(
|φ1〉 |φ2〉 · · ·

)
,

|φ′〉 =
(
|φ′

1〉 |φ′
2〉 · · ·

) (3.78)

and a matrix U with elements Uij . Then the transformation can be written
in the form

|φ′〉 = |φ〉U , (3.79)

the inverse transformation being

|φ〉 = |φ′〉U−1 = |φ′〉U† (3.80)

or

|φj〉 =
∑

i

|φ′
i〉U

†
ij =

∑
i

|φ′
i〉U∗

ji . (3.81)

The corresponding bras are organized as column vectors

〈φ| =



〈φ1|
〈φ2|

...


 = |φ〉† ,

〈φ′| =



〈φ′

1|
〈φ′

2|
...


 = |φ′〉† ,

(3.82)

with the transformation

〈φj | =
∑

i Uji〈φ′
i| ,

〈φ| = U〈φ′| , 〈φ′| = U†〈φ| .
(3.83)

Now consider the one-electron operator

F̂ =
∑
kl

〈φk|f̂ |φl〉â†kâl

=
∑
kl

∑
ij

Uki〈φ′
i|f̂ |φ′

j〉U
†
jlâ

†
kâl

=
∑
ij

〈φ′
i|f̂ |φ′

j〉
(∑

k

â†kUki

)(∑
l

U †
jlâl

)

=
∑
ij

〈φ′
i|f̂ |φ′

j〉â′i†â′j , (3.84)
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where

â′i
† =

∑
k

â†kUki , â′j =
∑

l

U †
jlâl . (3.85)

Again, we can organize the creation and annihilation operators as row and
column vectors, respectively:

â† = (â†1 â†2 · · · ) ,

â =




â1

â2
...


 (3.86)

(note the consistency of the adjoint notation). Then

â′† = â†U or â† = â′†U† (as for the kets) ,

â′ = U†â or â = Uâ′ (as for the bras) .
(3.87)

These definitions of the transformed creation and annihilation operators are
consistent with their usual definitions. For example,

â′j
†| · · · 〉 = |j′ · · · 〉 =

∑
i

|i · · · 〉Uij =
∑

i

â†i | · · · 〉Uij . (3.88)

3.3 Normal products and Wick’s theorem

3.3.1 Normal products of operators

The following definitions and analyses are designed to help in the evaluation
of matrix elements, in particular of vacuum expectation values 〈 |ÂB̂ · · · | 〉
of products of creation and annihilation operators (see Harris, Monkhorst
and Freeman 1992).

Let Â, B̂, Ĉ, . . . stand for various creation and annihilation operators.
Then the normal product (or normal-ordered product) of such operators,
relative to the physical vacuum, is written n[ÂB̂Ĉ · · · ] and is defined as the
rearranged product of operators such that all creation operators are to the
left of all annihilation operators with a phase factor corresponding to the
parity of the permutation producing the rearrangement:

n[ÂB̂Ĉ · · · ] = (−1)σ(P̂ )â†b̂† · · · ûv̂ , (3.89)

where

â†b̂† · · · ûv̂ = P̂ (ÂB̂Ĉ · · · ) , (3.90)
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P̂ being a permutation acting on the operators Â, B̂, . . . and σ(P̂ ) its par-
ity. This definition is not unique, since any rearrangement of the creation
operators among themselves and/or the annihilation operators among them-
selves is permissible but would always be accompanied by an appropriate
change in the phase factor; thus all forms of a normal product are equivalent.
Examples are as follows:

n[â†b̂] = â†b̂ , n[âb̂†] = −b̂†â ,

n[âb̂] = âb̂ = −b̂â ,

n[â†b̂ĉ†d̂] = −â†ĉ†b̂d̂ = ĉ†â†b̂d̂ = â†ĉ†d̂b̂ = −ĉ†â†d̂b̂ .

(3.91)

In general, n[ÂB̂Ĉ · · · ] �= ÂB̂Ĉ · · · , since permuting an annihilation opera-
tor â with a creation operator b̂† adds a term δ̂ab in addition to the change
in sign,

âb̂† = [â, b̂†]+ − b̂†â = δ̂ab − b̂†â , (3.92)

and the δ-term is not present in the definition of the normal product,
n[âb̂†] = −b̂†â.

Note that in writing the second-quantized forms of quantum mechani-
cal operators (including the Hamiltonian) in the previous section, we have
actually put them into normal-product form, so that we have

Ĥ =
∑
ij

hijn[â†i âj ] + 1
4

∑
ijkl

〈ij‖kl〉n[â†i â
†
j âlâk] . (3.93)

The usefulness of the normal-product form is that its vacuum expectation
value is zero:

〈 |n[ÂB̂ · · · ]| 〉 = 0 if [ÂB̂ · · · ] is not empty . (3.94)

3.3.2 Contractions

In order to be able to compute expectation values of general operator strings,
we will take advantage of Wick’s theorem (Wick 1950). In order to be
able to formulate this we need to define the contraction (or pairing) of
operators. For a pair of creation or annihilation operators Â, B̂, we define
their contraction as

ÂB̂ ≡ ÂB̂ − n[ÂB̂] . (3.95)
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Specifically, the four possibilities are:

â†b̂† = â†b̂† − â†b̂† = 0 ,

âb̂ = âb̂ − âb̂ = 0 ,

â†b̂ = â†b̂ − â†b̂ = 0 ,

âb̂† = âb̂† − (−b̂†â) = [â, b̂†]+ = δab .

(3.96)

Thus, the contraction of two operators is equal to a number (zero or one).
A normal product with contractions is defined as follows:

n[ÂB̂Ĉ · · · R̂ · · · Ŝ · · · T̂ · · · Û · · · ] = (−1)σR̂T̂ ŜÛ · · ·n[ÂB̂Ĉ · · · ] (3.97)

where all the contracted pairs have been put in front of the normal product
and σ is the parity of the permutation indicated by(

ÂB̂Ĉ · · · R̂ · · · Ŝ · · · T̂ · · · Û · · ·
R̂ T̂ Ŝ Û · · · ÂB̂Ĉ · · ·

)
.

The result is obviously either zero or plus or minus the normal product with
all the contracted pairs omitted.

3.3.3 Time-independent Wick’s theorem

The time-independent form of Wick’s theorem states: A product of a string
of creation and annihilation operators is equal to their normal product plus
the sum of all possible normal products with contractions. Symbolically,

ÂB̂ĈD̂ · · ·
=n[ÂB̂ĈD̂ · · · ] + n[ÂB̂ĈD̂ · · · ] + n[ÂB̂ĈD̂ · · · ] + n[ÂB̂ĈD̂ · · · ]

+ · · · + n[ÂB̂ĈD̂ · · · ] + n[ÂB̂ĈD̂ · · · ] + · · · + n[ÂB̂ĈD̂ · · · ] + · · ·

+ n[ÂB̂ĈD̂ · · · ] + n[ÂB̂ĈD̂ · · · ] + n[ÂB̂ĈD̂ · · · ] + · · ·

(3.98)

Thus, all possible contractions of one pair, two pairs etc. are included. This
expression is also written symbolically in the form

ÂB̂ĈD̂ · · · = n[ÂB̂ĈD̂ · · · ] +
∑

n[ÂB̂ĈD̂ · · · ] , (3.99)

the sum being over all possible contractions. An outline of the proof is given
in the next subsection. While the complete proof is somewhat tedious, it is
essentially straightforward (see, e.g. March, Young and Sampanthar 1967).
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The importance of the above result is that the vacuum expectation value
of any normal product with contractions is zero unless all operators are con-
tracted. The reason is that each contraction contributes a factor of zero or
±1 and, if an uncontracted normal product remains, its vacuum expectation
value is zero. Thus,

〈 |Â · · · B̂ · · · Ĉ · · · D̂ · · · | 〉 =
∑

〈 |n[Â · · · B̂ · · · Ĉ · · · D̂ · · · ]| 〉 , (3.100)

where the sum is over all possible fully contracted normal products. For
example,

â†b̂ĉ†d̂ê†f̂ = n[â†b̂ĉ†d̂ê†f̂ ] + n[â†b̂ĉ†d̂ê†f̂ ] + n[â†b̂ĉ†d̂ê†f̂ ]

+n[â†b̂ĉ†d̂ê†f̂ ] + n[â†b̂ĉ†d̂ê†f̂ ] , (3.101)

where we have omitted all contractions except those of the form ûv̂†, since
they vanish. Since no fully contracted term survives, the vacuum expectation
value of this operator product is zero, as is obvious from

〈 |â†︸︷︷︸
=0

b̂ĉ†d̂ê† f̂ | 〉︸︷︷︸
=0

= 0 . (3.102)

A more complex example is given by:

âb̂†ĉd̂†êf̂ † =n[âb̂†ĉd̂†êf̂ †] + n[âb̂†ĉd̂†êf̂ †] + n[âb̂†ĉd̂†êf̂ †] + n[âb̂†ĉd̂†êf̂ †]

+ n[âb̂†ĉd̂†êf̂ †] + n[âb̂†ĉd̂†êf̂ †] + n[âb̂†ĉd̂†êf̂ †] + n[âb̂†ĉd̂†êf̂ †]

+ n[âb̂†ĉd̂†êf̂ †] + n[âb̂†ĉd̂†êf̂ †] + n[âb̂†ĉd̂†êf̂ †] + n[âb̂†ĉd̂†êf̂ †]

+ n[âb̂†ĉd̂†êf̂ †] + n[âb̂†ĉd̂†êf̂ †] + n[âb̂†ĉd̂†êf̂ †] ,

(3.103)

for which the vacuum expectation value is

〈 |âb̂†ĉd̂†êf̂ †| 〉 = 〈 |n[âb̂†ĉd̂†êf̂ †]| 〉 = δabδcdδef . (3.104)

These examples demonstrate the power of Wick’s theorem.

3.3.4 Outline of proof of Wick’s theorem

In a normal-ordered product p̂†q̂† · · · ûv̂ all contractions vanish since in such
a product there can be no · · · ŝ · · · t̂† · · · contractions. Thus, if a string of
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operators is already in normal product form we have

p̂†q̂† · · · ûv̂ = n[p̂†q̂† · · · ûv̂]

= n[p̂†q̂† · · · ûv̂] +
∑
all

contractions

n[p̂†q̂† · · · ûv̂] , (3.105)

since all terms in the sum vanish. Thus Wick’s theorem holds in this case.
Consider next the case where one pair of operators is out of normal order:

p̂†q̂† · · · r̂ŝ† · · · ûv̂ = p̂†q̂† · · ·
(
[r̂, ŝ†]+ − ŝ†r̂

)
· · · ûv̂

= p̂†q̂† · · · δrs · · · ûv̂ − p̂†q̂† · · · ŝ†r̂ · · · ûv̂

= n[p̂†q̂† · · · r̂ŝ† · · · ûv̂] + n[p̂†q̂† · · · r̂ŝ† · · · ûv̂] .

(3.106)

All other contractions vanish, so Wick’s theorem still holds.
Now consider the case where we have two annihilation operators to the

left of one of the creation operators:

p̂†q̂† · · · r̂ŝt̂ † · · · ûv̂ = p̂†q̂† · · · r̂ŝt̂† · · · ûv̂ − p̂†q̂† · · · r̂t̂†ŝ · · · ûv̂

= p̂†q̂† · · · r̂ŝt̂† · · · ûv̂ − p̂†q̂† · · · r̂t̂†ŝ · · · ûv̂ + p̂†q̂† · · · t̂†r̂ŝ · · · ûv̂

= n[p̂†q̂† · · · r̂ŝt̂† · · · ûv̂] + n[p̂†q̂† · · · r̂ŝt̂† · · · ûv̂] + n[p̂†q̂† · · · r̂ŝt̂† · · · ûv̂] ,

(3.107)

again satisfying Wick’s theorem, since all other contractions vanish.
This procedure can be continued for all pairs of operators out of normal

order.

3.4 Particle–hole formulation

3.4.1 The reference state

Instead of referring all SDs and their matrix elements back to the vacuum
state

|I〉 = |i1i2 · · · iN 〉 = î†1î
†
2 · · · î

†
N | 〉 , (3.108)

it is more convenient to begin with a fixed reference state

|0〉 ≡ |Φ0〉 = |ijk · · ·n〉 , (3.109)
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and define other SD’s relative to it, e.g.

|Φa
i 〉 ≡ â†î|Φ0〉 = |ajk · · ·n〉 (single excitation) ,

|Φab
ij 〉 ≡ â†b̂†ĵ î|Φ0〉 = |abk · · ·n〉 (double excitation) ,

|Φi〉 ≡ î|Φ0〉 = |jk · · ·n〉 (electron removal) ,

|Φa〉 ≡ â†|Φ0〉 = |aijk · · · n〉 (electron attachment)

(3.110)

etc. Note also that

|Φab
ij 〉 = |Φba

ji 〉 = −|Φba
ij 〉 = −|Φab

ji 〉 . (3.111)

The reference state |0〉 is also called the Fermi vacuum (corresponding to
the Fermi level, the level of the highest occupied orbital in the reference
function), in contrast with the physical vacuum | 〉. (Some sources use
|0〉 for the physical vacuum and |Φ〉 or |Φ0〉 for the Fermi vacuum.) The
spinorbitals i, j, k, . . . , n that are occupied in |0〉 are called hole states (they
appear explicitly only when an electron is excited out of them by, e.g. î,
creating a hole in the reference state), while the other spinorbitals a, b, . . . are
called particle states. We shall use the letters i, j, k, . . . to indicate indices
restricted to hole states, the letters a, b, c, . . . to indicate indices restricted
to particle states and the letters p, q, r, . . . to indicate any state (either hole
or particle, without restriction). (Other common notations are: α, β, γ, . . .

for holes, a, b, c, . . . for particles, p, q, r, . . . for either; λ, µ, ν, . . . for holes,
p, q, r, . . . for particles, m, n, . . . for either; and other variations thereof.)

Using this notation we find that

î†|0〉 = 0 , â|0〉 = 0 ,

〈0|̂i = 0 , 〈0|â† = 0 .
(3.112)

It is convenient to define a new set of operators, sometimes called pseudo-
creation and pseudo-annihilation operators (or quasi-operators), via

b̂i = â†i , b̂†i = âi ,

b̂a = âa , b̂†a = â†a .
(3.113)

Thus b̂†i creates a vacancy in state i while b̂i eliminates such a vacancy. The
particle pseudo-operators are identical to the ordinary particle operators,
while the hole pseudo-creation and pseudo-annihilation operators are equiv-
alent to the ordinary hole annihilation and creation operators, respectively.
The motivation for this notation is that all pseudo-annihilation operators
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operating to the right on the Fermi vacuum state give zero and all pseudo-
creation operators operating to the left on the Fermi vacuum state also give
zero,

b̂p|0〉 = 0 , 〈0|b̂†p = 0 . (3.114)

Here we will continue to use the ordinary creation and annihilation operator
notation relative to the physical vacuum but our particle and hole states
will be defined relative to the Fermi vacuum.

The energy of the reference state can be computed as follows:

Eref = 〈ijk · · ·n|Ĥ|ijk · · ·n〉
=

∑
pq

〈ijk · · ·n|p̂†q̂|ijk · · ·n〉hpq

+1
2

∑
pqrs

〈ijk · · ·n|p̂†q̂†ŝr̂|ijk · · ·n〉〈pq|v̂|rs〉

=
∑

l

〈ijk · · ·n|l̂† l̂|ijk · · ·n〉hll

+1
2

∑
l �=m

〈ijk · · ·n|l̂†m̂†m̂l̂|ijk · · ·n〉〈lm|v̂|lm〉

+1
2

∑
l �=m

〈ijk · · ·n|l̂†m̂† l̂m̂|ijk · · ·n〉〈lm|v̂|ml〉

=
∑

l

hll + 1
2

∑
lm

〈lm|v̂|lm〉 − 1
2

∑
lm

〈lm|v̂|ml〉 ,

=
∑

l

hll + 1
2

∑
lm

〈lm‖lm〉 . (3.115)

Note that we have used l̂†m̂† l̂m̂ = −l̂†m̂†m̂l̂, that the summations are over
the hole states only and that the sum over l and m includes both l > m and
l < m, as well as l = m, in the last two rows (since 〈lm‖nn〉 = 〈ll‖mn〉 = 0).
We may also write Eref in the more familiar form

Eref =
∑

l

hll +
∑
l<m

〈lm‖lm〉 , (3.116)

where the restriction l < m cancels the factor 1
2 .
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3.4.2 Normal products and Wick’s theorem relative

to the Fermi vacuum

Now we are in a position to modify the concepts of normal products, con-
tractions and Wick’s theorem so that they relate to a reference state (the
Fermi vacuum) instead of the physical vacuum.

A product of creation and/or annihilation operators is said to be in normal
order relative to the Fermi vacuum |0〉 = |ijk · · ·n〉 if all pseudo-creation
operators â†, . . . and î, . . . are to the left of all pseudo-annihilation operators
â, . . . and î†, . . .. Using the notation

b̂†i = âi = î ,

b̂i = â†i = î† ,

b̂†a = â†a = â† ,

b̂a = âa = â ,

(3.117)

the product is in normal order if all the b̂†p operators are to the left of all the
b̂p operators. Since

b̂p|0〉 = 0 , 〈0|b̂†p = 0 , (3.118)

the Fermi-vacuum expectation value of a normal-ordered product of such
operators vanishes.

To distinguish the new type of normal product from the previous type, it
is often written as

N [ABC · · · ] = (−1)σ(P̂ )b̂†pb̂
†
q · · · b̂ub̂v , (3.119)

instead of n[ABC · · · ] when the ordering is relative to the physical vac-
uum. The power σ(P̂ ) of the phase factor is the parity of the permutation
from ABC · · · to b̂†pb̂

†
q · · · b̂ub̂v. Here we shall use the alternative notation

{ABC · · · } for the normal product relative to the Fermi vacuum. Contrac-
tions relative to the Fermi vacuum will be denoted by brackets above the
operators instead of below, and we have

ÂB̂ = ÂB̂ − {ÂB̂} . (3.120)

We then find that the only nonzero contractions are

î†ĵ = δij , âb̂† = δab . (3.121)
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A normal product with contractions is also defined in the same way as in
the case where it is relative to the physical vacuum:

{ÂB̂Ĉ · · · R̂ · · · Ŝ · · · T̂ · · · Û · · · } = (−1)σR̂T̂ ŜÛ · · · {ÂB̂Ĉ · · · } . (3.122)

Here σ is the parity of the permutation, as given below:(
ÂB̂Ĉ · · · R̂ · · · Ŝ · · · T̂ · · · Û · · ·

R̂ T̂ Ŝ Û · · · ÂB̂Ĉ · · ·

)
.

Wick’s theorem has exactly the same form in this system as in the physical
vacuum system,

ÂB̂ĈD̂ · · · = {ÂB̂ĈD̂ · · · } +
∑
all

contractions

{ÂB̂ĈD̂ · · · } ; (3.123)

as indicated, the sum is over all possible contractions of one pair, two pairs
etc. Obviously, the usefulness of this theorem is at least partly due to the
fact that the Fermi vacuum expectation value of a normal product vanishes
unless it is fully contracted, so that

〈0|Â · · · B̂ · · · Ĉ · · · D̂ · · · |0〉 =
∑

〈0|Â · · · B̂ · · · Ĉ · · · D̂ · · · }|0〉 , (3.124)

where the sum is over all fully contracted normal products. From here on,
unless explicitly stated otherwise, whenever we talk of the vacuum we will
be referring to the Fermi vacuum and whenever we talk of normal products
or contractions, we are referring to these concepts relative to the Fermi
vacuum.

3.5 Partitioning of the Hamiltonian

The most convenient form for the zero-order part of the Hamiltonian is that
of a diagonal one-electron operator,

Ĥ0 =
∑

p

εpp̂
†p̂ . (3.125)

In principle, the choice of the energy parameters {εp, p = 1, 2, . . .}, which
we shall call orbital energies, is arbitrary and can be made independently of
the choice of the set of orthonormal spinorbitals {φp, p = 1, 2, . . .} used in
the construction of the Slater determinants, but both choices strongly affect
the convergence of the perturbation series. With the total Hamiltonian split
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into a one-electron and a two-electron part according to (3.67) and (3.74),
the perturbation is given by

V̂ = (Ĥ1 − Ĥ0) + Ĥ2

=
∑
pq

(hpq − εpδpq)p̂†q̂ + 1
4

∑
pqrs

〈pq‖rs〉p̂†q̂†ŝr̂ . (3.126)

Most commonly the orbital energies are chosen as the diagonal elements

εp = fpp (3.127)

of a Fock operator (shown here in both first- and second-quantized forms)

F̂ =
N∑

µ=1

f̂µ =
∑
pq

fpqp̂
†q̂. (3.128)

The Fock operator F̂ is defined in terms of an auxiliary one-electron operator

Û =
N∑

µ=1

ûµ =
∑
pq

upqp̂
†q̂ (3.129)

by

F̂ = Ĥ1 + Û =
∑
pq

(hpq + upq)p̂†q̂ =
∑
pq

fpqp̂
†q̂ , (3.130)

fpq = 〈p|f̂ |q〉 = hpq + upq . (3.131)

While Û could, in principle, be chosen arbitrarily, it is generally chosen in
a particular way designed to generate an appropriate zero-order Hamiltonian
and, at the same time, simplify the perturbation operator by canceling cer-
tain contributions to Ĥ2. Using the Coulomb and exchange operators defined
in (1.4), we define û as in (1.3),

û =
∑

i

(
Ĵi − K̂i

)
, (3.132)

or, explicitly,

upq = 〈p|û|q〉 =
∑

i

〈pi‖qi〉 . (3.133)

The sums in (3.132), (3.133) are over the hole-state spinorbitals that define
the reference state |0〉 used as the zero-order function for the perturbation
treatment.
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Defining the operator

F̂ ′ =
∑
pq

f ′
pqp̂

†q̂ , (3.134)

f ′
pq = 〈p|f̂ ′|q〉 = fpq − εpδpq , (3.135)

the perturbation (3.126) becomes

V̂ = F̂ ′ − Û + Ĥ2

=
∑
pq

(f ′
pq − upq)p̂†q̂ + 1

2

∑
pqrs

〈pq|v̂|rs〉p̂†q̂†ŝr̂ . (3.136)

In these definitions we have not assumed that the spinorbitals are Hartree–
Fock spinorbitals for the state being studied or for any other state, neither
have we assumed that the orbital energies are equal to the diagonal elements
of the Fock operator, (3.127). However, when a Hartree–Fock function is
used as the reference function, and if (3.127) holds, this choice makes the F̂

operator equal to the Fock operator of Hartree–Fock theory and makes the
reference energy Eref, (3.115), equal to the HF energy EHF. Furthermore, in
the canonical Hartree–Fock case this Fock operator is diagonal and is given
completely in terms of the orbital energies

fpq = εpδpq (canonical HF) (3.137)

and

εp = hpp +
∑

i

〈pi‖pi〉 . (3.138)

In the noncanonical HF case, F̂ is block diagonal in terms of the occupied
and virtual spinorbital blocks:

fia = 0 (noncanonical HF) . (3.139)

When the orbital energies are given by (3.127) (this is the most common
practice), the operator F̂ ′, (3.134), becomes equal to the off-diagonal part
F̂ o of F̂ :

F̂ = F̂ d + F̂ o , f̂ = f̂d + f̂o , (3.140)

F̂ d =
∑

p

fppp̂
†p̂ =

∑
pq

fd
pqp̂

†q̂ , (3.141)

F̂ o =
∑
p�=q

fpqp̂
†q̂ =

∑
pq

fo
pqp̂

†q̂ , (3.142)
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where

fd
pq = 〈p|f̂d|q〉 = fppδpq , fo

pq = 〈p|f̂o|q〉 = (1 − δpq)fpq . (3.143)

In this case

Ĥ0 = F̂ d (3.144)

and

V̂ = F̂ o − Û + Ĥ2

=
∑
pq

(fo
pq − upq)p̂†q̂ + 1

2

∑
pqrs

〈pq|v̂|rs〉p̂†q̂†ŝr̂ . (3.145)

The perturbation thus consists of one-electron and two-electron parts,

V̂1 = F̂ o − Û =
∑
pq

(fo
pq − upq)p̂†q̂ ,

V̂2 = Ĥ2 = 1
2

∑
pqrs

〈pq|v̂|rs〉p̂†q̂†ŝr̂ = 1
4

∑
pqrs

〈pq‖rs〉p̂†q̂†ŝr̂ .
(3.146)

Unless stated otherwise, it will generally be assumed that the orbital energies
are given by (3.127) and that the auxiliary operator Û is determined by
(3.133).

The definition of û according to (3.133) will lead, as we shall see later,
to the cancellation of −Û with certain contributions to the two-electron
part V̂2, leaving just F̂ o (or, more generally, F̂ ′) as the one-electron part of
the perturbation. In the canonical Hartree–Fock representation, in which
F̂ o = 0, all the one-electron part V̂1 is canceled. Ultimately, the choices
of the one-particle basis, the orbital energies and the operators Û and F̂

are motivated by the desire to make the perturbation V̂ small, and the
Hartree–Fock scheme is usually a good way of achieving this goal.

The use of a diagonal zero-order Hamiltonian is motivated by the con-
venience of having a known complete set of eigenfunctions of Ĥ0, leading
to the diagonal case of PT. Indeed, using (3.125) we find that all possi-
ble Slater determinants made up of the spinorbitals {φ1, φ2, . . .} = {p} =
{i, j, . . . , a, b, . . .} are eigenfunctions of Ĥ0, and the eigenvalues are sums of
the corresponding orbital energies,

Ĥ0|rst · · · 〉 =
∑

p

εpp̂
†p̂|rst · · · 〉 = (εr + εs + εt + · · · )|rst · · · 〉 (3.147)

(for any number of electrons).
If the reference state is

|Φ0〉 = |jk · · ·n〉 (3.148)
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then

Ĥ0|Φ0〉 = E
(0)
0 |Φ0〉 = (εj + εk + · · · + εn)|Φ0〉 , E

(0)
0 =

∑
i

εi (3.149)

(the sum is over the hole states). This zero-order energy is not the same as
Eref. In fact, from (3.115),

Eref =
∑

i

hii + 1
2

∑
ij

〈ij‖ij〉

=
∑

i

(fii − uii) + 1
2

∑
ij

〈ij‖ij〉

=
∑

i

εi −
∑

i

uii + 1
2

∑
ij

〈ij‖ij〉

=
∑

i

εi − 1
2

∑
ij

〈ij‖ij〉 , (3.150)

using (3.133). Combining the first and last line of (3.150), we can also write
the reference energy in the form

Eref = 1
2

∑
i

(hii + εi) . (3.151)

The various sums in (3.150), (3.151) are the traces of matrix representations
over the occupied spinorbital space and thus are invariant under unitary
transformations of the occupied spinorbitals.

Following the same analysis as in (3.115), we have

〈Φ0|V̂ |Φ0〉 =
〈
Φ0

∣∣∣∑
pq

(fo
pq − upq)p̂†q̂ + 1

2

∑
pqrs

〈pq|v̂|rs〉p̂†q̂†ŝr̂
∣∣∣Φ0

〉

= −
∑

i

uii + 1
2

∑
ij

〈ij‖ij〉 = −1
2

∑
ij

〈ij‖ij〉 (3.152)

(since fo
ii = 0), and so we find that (3.150) is consistent with

Eref = 〈Φ0|Ĥ|Φ0〉 = 〈Φ0|Ĥ0 + V̂ |Φ0〉 = E(0) + E(1) . (3.153)

(In the more general case, in which (3.127) is not assumed, (3.150)–(3.152)
have the additional contribution

∑
i f

′
ii.) For any other SD |Φab···

ij··· 〉 we have

Ĥ0|Φab···
ij··· 〉 =

(
E(0) + εa + εb + · · · − εi − εj − · · ·

)
|Φab···

ij··· 〉 . (3.154)

The partitioning of the Hamiltonian based on an HF reference function
and Fock operator, particularly in the canonical HF case, is often referred to
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as Møller–Plesset (MP) partitioning (Møller and Plesset l934). The RSPT
expansion based on MP partitioning and Hartree–Fock orbitals has been
referred to as Møller–Plesset perturbation theory (Binkley and Pople 1975,
Pople, Binkley and Seeger 1976).

Other partitionings of the Hamiltonian can also be used as a basis for
an RSPT expansion. In particular, the diagonal part of the Hamiltonian in
any convenient Hilbert-space representation can be used as the zero-order
Hamiltonian Ĥ0:

Ĥ0 =
∑

i

|Φi〉〈Φi|Ĥ|Φi〉〈Φi| =
∑

i

|Φi〉Hii〈Φi| ,

V̂ = Ĥ − Ĥ0 =
∑
i�=j

|Φi〉〈Φi|Ĥ|Φj〉〈Φj | .
(3.155)

Obviously, the Hilbert-space basis functions |Φi〉 are eigenfunctions of this
Ĥ0, with eigenvalues Hii:

Ĥ0|Φi〉 =
∑

j

|Φj〉Hjj〈Φj |Φi〉 = |Φi〉Hii . (3.156)

This type of partitioning is called Epstein–Nesbet (EN) partitioning (Epstein
1926, Nesbet 1955) and leads to a perturbation expansion in which the
denominators contain differences of diagonal matrix elements of the full
Hamiltonian H00 − Hii. In this case Ĥ0 is not a one-electron operator, and
the Hii are not expressible as sums of orbital energies. The Epstein–Nesbet
perturbation expansion can also be obtained as a result of infinite-order
summations of certain classes of terms in the Møller–Plesset series though
unlike the MP choice, the EN expansion is not invariant under rotations
among the occupied or the unoccupied orbitals. The effect of these two types
of partitioning on PT convergence was examined by Bartlett and Shavitt
(1977b).

3.6 Normal-product form of the quantum-mechanical operators

3.6.1 One-electron operators

Let us consider a one-electron operator

F̂ =
∑
pq

〈p|f̂ |q〉p̂†q̂ . (3.157)

Using Wick’s theorem,

p̂†q̂ = {p̂†q̂} + p̂†q̂ . (3.158)
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The contracted term vanishes unless p and q are the same hole state (call it i),
when it is equal to 1, and thus

F̂ =
∑
pq

〈p|f̂ |q̂〉{p̂†q̂} +
∑

i

〈i|f̂ |i〉

= F̂N +
∑

i

〈i|f̂ |i〉 , (3.159)

where FN is the normal-product form of the operator (3.157),

F̂N =
∑
pq

〈p|f̂ |q〉{p̂†q̂} . (3.160)

Since 〈0|F̂N|0〉 = 0, we have

〈0|F̂ |0〉 =
∑

i

〈i|f̂ |i〉 , F̂ = F̂N + 〈0|F̂ |0〉 , (3.161)

so that F̂N represents the difference between F̂ and its Fermi-vacuum ex-
pectation value,

F̂N = F̂ − 〈0|F̂ |0〉 . (3.162)

Note that F̂N contains hole–hole, particle–particle and hole–particle terms,

F̂N =
∑
ij

fij {̂i†ĵ} +
∑
ab

fab{â†b̂} +
∑
ia

fia{̂i†â} +
∑
ia

fai{â†î}

= −
∑
ij

fij ĵ î
† +

∑
ab

fabâ
†b̂ +

∑
ia

fiaî
†â +

∑
ia

faiâ
†î , (3.163)

and can be separated into diagonal and off-diagonal parts:

F̂N = F̂ d
N + F̂ o

N ,

F̂ d
N =

∑
p

fpp{p̂†p̂} = F̂ d − 〈0|F̂ d|0〉 ,

F̂ o
N =

∑
p�=q

fpq{p̂†q̂} = F̂ o − 〈0|F̂ o|0〉 = F̂ o,

(3.164)

since 〈0|F̂ o|0〉 = 0.

3.6.2 Two-electron operators

Next consider a two-electron operator,

Ĝ = 1
2

∑
pqrs

〈pq|ĝ|rs〉p̂†q̂†ŝr̂ . (3.165)
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Noting that

p̂†q̂† = p̂q̂ = 0 , î†ĵ = δij , â†b̂ = 0 , (3.166)

we obtain

p̂†q̂†ŝr̂ = {p̂†q̂†ŝr̂} + {p̂†q̂†ŝr̂} + {p̂†q̂†ŝr̂}

+{p̂†q̂†ŝr̂} + {p̂†q̂†ŝr̂} + {p̂†q̂†ŝr̂} + {p̂†q̂†ŝr̂}

= {p̂†q̂†ŝr̂} + p̂†r̂{q̂†ŝ} + q̂†ŝ{p̂†r̂}

−p̂†ŝ{q̂†r̂} − q̂†r̂{p̂†ŝ} + p̂†r̂q̂†ŝ − p̂†ŝq̂†r̂ , (3.167)

and therefore

Ĝ = 1
2

∑
pqrs

〈pq|ĝ|rs〉{p̂†q̂†ŝr̂} + 1
2

∑
ipq

〈ip|ĝ|iq〉{p̂†q̂}

+1
2

∑
ipq

〈pi|ĝ|qi〉{p̂†q̂} − 1
2

∑
ipq

〈ip|ĝ|qi〉{p̂†q̂}

−1
2

∑
ipq

〈pi|ĝ|iq〉{p̂†q̂} + 1
2

∑
ij

〈ij|ĝ|ij〉 − 1
2

∑
ij

〈ij|ĝ|ji〉 . (3.168)

The second and fourth terms are equal to the third and fifth, respectively,
thus removing the factor 1

2 , so

Ĝ = 1
2

∑
pqrs

〈pq|ĝ|rs〉{p̂†q̂†ŝr̂} +
∑
ipq

〈pi|ĝ|qi〉{p̂†q̂}

−
∑
ipq

〈pi|ĝ|iq〉{p̂†q̂} + 1
2

∑
ij

〈ij|ĝ|ij〉 − 1
2

∑
ij

〈ij|ĝ|ji〉

= ĜN +
∑
pq

(∑
i

〈pi|ĝ|qi〉A
)
{p̂†q̂} + 1

2

∑
ij

〈ij|ĝ|ij〉A , (3.169)

where

ĜN = 1
2

∑
pqrs

〈pq|ĝ|rs〉{p̂†q̂†ŝr̂} = 1
4

∑
pqrs

〈pq|ĝ|rs〉A{p̂†q̂†ŝr̂} (3.170)

and

〈pq|ĝ|rs〉A = 〈pq|ĝ|rs〉 − 〈pq|ĝ|sr〉 . (3.171)

Since the Fermi-vacuum expectation value of Ĝ is

〈0|Ĝ|0〉 = 1
2

∑
ij

〈ij|ĝ|ij〉A , (3.172)
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we have

Ĝ = ĜN +
∑
pq

(∑
i

〈pi|ĝ|qi〉A
)
{p̂†q̂} + 〈0|Ĝ|0〉

= ĜN + Ĝ′
N + 〈0|Ĝ|0〉 , (3.173)

where G′
N is a normal-product one-particle operator:

Ĝ′
N =

∑
pq

(∑
i

〈pi|ĝ|qi〉A
)
{p̂†q̂} =

∑
pq

g′pq{p̂†q̂} ,

g′pq =
∑

i

〈pi|ĝ|qi〉A .
(3.174)

3.6.3 The normal-product Hamiltonian

Next we look at the Hamiltonian operator, as partitioned in Section 3.5. For
the zero-order part, using (3.125) and Wick’s theorem we have

(Ĥ0)N = Ĥ0 − E(0) =
∑

p

εpp̂
†p̂ −

∑
i

εi =
∑

p

εp{p̂†p̂} . (3.175)

The one-electron part of the perturbation is given by (see (3.146), (3.128))

V̂1 = (V̂1)N + 〈0|V̂1|0〉 ,

(V̂1)N = F̂ o
N − ÛN =

∑
pq

(f̂o
pq − upq){p̂†q̂} ,

〈0|V̂1|0〉 = −
∑

i

uii = −
∑
ij

〈ij‖ij〉 = −〈0|Û |0〉 .

(3.176)

The two-electron part, using (3.173), (3.174), is

V̂2 = (V̂2)N + V̂ ′
N + 〈0|V̂2|0〉 , (3.177)

where

(V̂2)N = 1
4

∑
pqrs

〈pq‖rs〉{p̂†q̂†ŝr̂} ,

V̂ ′
N =

∑
pq

v′pq{p̂†q̂} ,

v′pq =
∑

i

〈pi‖qi〉 ,

〈0|V̂2|0〉 = 1
2

∑
ij

〈ij‖ij〉 ,

(3.178)
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so that

v′pq = upq , V̂ ′
N = ÛN . (3.179)

The operator (V̂2)N will play a very important role in the formalism, and
will be denoted by ŴN or simply Ŵ ,

Ŵ = ŴN = 1
4

∑
pqrs

〈pq‖rs〉{p̂†q̂†ŝr̂} . (3.180)

The total perturbation is then given by

V̂ = F̂ o
N − ÛN + 〈0|V̂1|0〉 + ŴN + V̂ ′

N + 〈0|V̂2|0〉
= F̂ o

N + ŴN + 〈0|V̂ |0〉 , (3.181)

using the cancellation between V̂ ′
N and −ÛN, (3.179) (this is the cancellation

alluded to before (3.147), in Section 3.5). The shifted perturbation operator,
which we define as

V̂N = V̂ − 〈0|V̂ |0〉 (3.182)

(this is the operator denoted by Ŵ in Chapter 2), is then found to be a
normal-product operator (relative to the Fermi vacuum):

V̂N = F̂ o
N + ŴN

=
∑
p�=q

fpq{p̂†q̂} + 1
4

∑
pqrs

〈pq‖rs〉{p̂†q̂†ŝr̂} . (3.183)

As seen in Chapter 2, the matrix elements of the shifted perturbation op-
erator (3.182) are of central importance in the perturbation expansion, and
the normal-product property of V̂N will greatly facilitate the computation
of its matrix elements.

In the canonical HF case, in which the Fock operator is diagonal, V̂N is
made up of the two-particle normal-product operator only:

V̂N = Ŵ = 1
4

∑
pqrs

〈pq‖rs〉{p̂†q̂†ŝr̂} (canonical HF). (3.184)

In this case, the operator Ŵ defined in (3.180) is indeed the same as the Ŵ

operator of Chapter 2.
In the more general case, in which (3.127) is not assumed, we have (using

f ′
pq = fpq − εpδpq)

V̂N = F̂ ′
N + ŴN

=
∑
pq

f ′
pq{p̂†q̂} + 1

4

∑
pqrs

〈pq‖rs〉{p̂†q̂†ŝr̂} (3.185)
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and

〈0|V̂ |0〉 =
∑

i

f ′
ii − 1

2

∑
ij

〈ij‖ij〉 . (3.186)

It is also possible to rewrite the Hamiltonian in a form that eliminates the
first-order energy correction, leaving V̂N as the total perturbation, analo-
gously to the last paragraph of subsection 2.4.4. Starting with Ĥ = Ĥ0 + V̂ ,
we subtract

〈0|Ĥ|0〉 = 〈0|Ĥ0|0〉 + 〈0|V̂ |0〉 (3.187)

from both sides, obtaining

Ĥ − 〈0|Ĥ|0〉 =
(
Ĥ0 − 〈0|Ĥ0|0〉

)
+

(
V̂ − 〈0|V̂ |0〉

)
,(

Ĥ − Eref

)
=

(
Ĥ0 − E(0)

)
+ V̂N .

(3.188)

In this scheme Ĥ0 − E(0) = (Ĥ0)N is the zero-order Hamiltonian, V̂N is the
perturbation and Ĥ − Eref = ĤN is the full Hamiltonian and is a normal-
product operator. The Schrödinger equation for this operator is

ĤNΨ = ∆EΨ , (3.189)

and the computed energy is

∆E = E − Eref (3.190)

(the correlation energy in the Hartree–Fock case). We also find that the zero-
and first-order energies vanish in this form since they are vacuum expecta-
tion values of normal-product operators; the first nonvanishing contribution
is the second-order energy.

Finally, we can write the total normal-product Hamiltonian as

ĤN = F̂N + Ŵ = F̂ d
N + F̂ o + Ŵ = F̂ d

N + V̂N . (3.191)

Most of the discussion in this book is based on the normal-product
Schrödinger equation (3.189) and the decompositions (3.191) of the normal-
product Hamiltonian.

3.7 Generalized time-independent Wick’s theorem

To complete this phase of the analysis we need one more theorem, the gen-
eralized Wick’s theorem dealing with products of normal products of oper-
ators. This is needed since we shall have to evaluate matrix elements of the
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normal-product operator Ŵ between various Slater determinants (not just
the reference SD), as for example in

〈Φab···
ij··· |Ŵ |Φde···

lm···〉 = 〈0|̂i†ĵ† · · · b̂âŴ d̂†ê† · · · m̂l̂|0〉 . (3.192)

Here we have a vacuum expectation value of a product of three operator
strings, each of which separately is in normal-product form, since

{̂i†ĵ† · · · b̂â} = î†ĵ† · · · b̂â ,

{d̂†ê† · · · m̂l̂} = d̂†ê† · · · m̂l̂ .
(3.193)

The generalized Wick’s theorem states that a general product of creation
and annihilation operators in which some operator strings are already in
normal-product form is given as the overall normal product of all the creation
and annihilation operators plus the sum of all overall normal products with
contractions except that, since contractions of pairs of operators that are
already in normal order vanish (as seen from the definition (3.120) of a
contraction), no contractions between pairs of operators within the same
original normal product need be included:

{Â1Â2 · · · }{B̂1B̂2 · · · }{Ĉ1Ĉ2 · · · } · · ·

= {Â1Â2 · · · B̂1B̂2 · · · Ĉ1Ĉ2 · · · } +
∑′

{Â1Â2 · · · B̂1B̂2 · · · Ĉ1Ĉ2 · · · } ,

(3.194)

where the sum is over contractions of one pair at a time, two pairs, etc., and
the prime on the summation sign indicates that no “internal” contractions,

such as ÂiÂj , B̂iB̂j , etc., are to be included.
Note that the case in which the original product contains some individual

creation or annihilation operators not within any normal product is also
included in the scope of the generalized Wick’s theorem, since for such op-
erators Â = {Â}.

3.8 Evaluation of matrix elements

As a first example we shall use the generalized Wick’s theorem to evaluate
a matrix element of a normal-product one-electron operator between two
singly excited determinants,

〈Φa
i |F̂N|Φb

j〉 = 〈0|̂i†âF̂Nb̂†ĵ|0〉
=

∑
pq

〈p|f̂ |q〉〈0|{̂i†â}{p̂†q̂}{b̂†ĵ}|0〉 , (3.195)
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where we have used î†â = {̂i†â} , b̂†ĵ = {b̂†ĵ}. In this case the only non-zero
contractions are of the type

î†ĵ = δij , î†q̂ = δiq , p̂†ĵ = δpj ,

âb̂† = δab , âp̂† = δap , q̂b̂† = δqb .

(3.196)

Noting that only fully contracted terms survive in the (Fermi) vacuum ex-
pectation value, the only ways in which such terms are obtained through
contractions between different normal products are as follows:

1. one of î† and â with one of q̂, p̂†,

2. the remaining â or î† with b̂† or ĵ, respectively; and

3. the remaining q̂ or p̂† with the remaining b̂† or ĵ.

The only two possibilities then are î†âp̂†q̂b̂†ĵ, and î†âp̂†q̂b̂†ĵ , giving

〈Φa
i |F̂N|Φb

j〉 = −〈j|f̂ |i〉δab + 〈a|f̂ |b〉δij . (3.197)

Specifically,

〈Φa
i |F̂N|Φa

j 〉 = −〈j|f̂ |i〉 (i �= j) ,

〈Φa
i |F̂N|Φb

i〉 = 〈a|f̂ |b〉 (a �= b) ,

〈Φa
i |F̂N|Φa

i 〉 = 〈a|f̂ |a〉 − 〈i|f̂ |i〉 .

(3.198)

The last case leads to the obvious result

〈Φa
i |F̂ |Φa

i 〉 = 〈0|F̂ |0〉 + 〈Φa
i |F̂N|Φa

i 〉
=

∑
j

〈j|f̂ |j〉 + 〈a|f̂ |a〉 − 〈i|f̂ |i〉 =
∑
j �=i

〈j|f̂ |j〉 + 〈a|f̂ |a〉 . (3.199)

As another example we shall evaluate the matrix element of Ŵ between
the same two configurations,

〈Φa
i |Ŵ |Φb

j〉 = 〈0|̂i†âŴ b̂†ĵ|0〉
= 1

2

∑
pqrs

〈pq|v̂|rs〉〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĵ}|0〉 . (3.200)
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Noting again that the only non-zero contractions are of the types î†ĵ =

δij and âb̂† = δab and that only fully contracted terms survive in the (Fermi)
vacuum expectation value, we must contract two of the p̂†q̂†ŝr̂ operators with
each of the pairs to the left and right. The options for non-zero contractions
then are:

〈Φa
i |Ŵ |Φb

j〉 = 1
2

∑
pqrs

〈pq|v̂|rs〉
{
〈0|̂i†âp̂†q̂†ŝr̂b̂†ĵ|0〉 + 〈0|̂i†âp̂†q̂†ŝr̂b̂†ĵ|0〉

+ 〈0|̂i†âp̂†q̂†ŝr̂b̂†ĵ|0〉 + 〈0|̂i†âp̂†q̂†ŝr̂b̂†ĵ|0〉
}

= −1
2〈aj|v̂|bi〉 + 1

2〈aj|v̂|ib〉 + 1
2〈ja|v̂|bi〉 −

1
2〈ja|v̂|ib〉

= 〈aj|v̂|ib〉 − 〈aj|v̂|bi〉 = 〈aj‖ib〉 . (3.201)

It can be verified that the sign factor for a fully contracted product of
creation and annihilation operators is (−1)x, where x is the number of in-
tersections of the contraction lines. Obviously x is not unique in general,
since the contraction lines can be drawn with different intersection patterns,
but for any particular contracted product the number of intersections is ei-
ther always even, giving a sign factor of +1, or always odd, giving a factor
of −1.

A more difficult example is the matrix element between a single excitation
and a double excitation:

〈Φa
i |Ŵ |Φbc

jk〉 = 1
2

∑
pqrs

〈pq|v̂|rs〉〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 . (3.202)

The only way in which we can fully contract the operators in the vacuum
matrix element without internal contractions inside each of the three normal
products is to contract the two operators in the first normal product with one
operator each in the second and third products respectively, and introduce
three contractions between the latter two products. The possibilities are:

1. î† with ŝ or r̂, â with b̂† or ĉ†, r̂ or ŝ with ĉ† or b̂†, p̂† and q̂† with k̂

and ĵ;

2. î† with k̂ or ĵ, â with p̂† or q̂†, ĵ or k̂ with q̂† or p̂†, ŝ and r̂ with b̂†

and ĉ†.



3.8 Evaluation of matrix elements 89

Thus we get

〈Φa
i |Ŵ |Φbc

jk〉 = 1
2

∑
pqrs

〈pq|v̂|rs〉
(
〈0|̂i†âp̂†q̂†ŝr̂b̂†ĉ†k̂ĵ|0〉 + 〈0|̂i†âp̂†q̂†ŝr̂b̂†ĉ†k̂ĵ|0〉

+ 〈0|̂i†âp̂†q̂†ŝr̂b̂†ĉ†k̂ĵ|0〉 + 〈0|̂i†âp̂†q̂†ŝr̂b̂†ĉ†k̂ĵ|0〉

+ 〈0|̂i†âp̂†q̂†ŝr̂b̂†ĉ†k̂ĵ|0〉 + 〈0|̂i†âp̂†q̂†ŝr̂b̂†ĉ†k̂ĵ|0〉

+ 〈0|̂i†âp̂†q̂†ŝr̂b̂†ĉ†k̂ĵ|0〉 + 〈0|̂i†âp̂†q̂†ŝr̂b̂†ĉ†k̂ĵ|0〉

+ eight more terms from possibility 2

)
,

(3.203)

from which we obtain

〈Φa
i |Ŵ |Φbc

jk〉 =1
2

(
− 〈kj|v̂|ci〉δab + 〈jk|v̂|ci〉δab + 〈kj|v̂|ic〉δab − 〈jk|v̂|ic〉δab

+ 〈kj|v̂|bi〉δac − 〈jk|v̂|bi〉δac − 〈kj|v̂|ib〉δac + 〈jk|v̂|ib〉δac

+ 〈aj|v̂|cb〉δik − 〈aj|v̂|bc〉δik − 〈ja|v̂|cb〉δik + 〈ja|v̂|bc〉δik

− 〈ak|v̂|cb〉δij + 〈ak|v̂|bc〉δij + 〈ka|v̂|cb〉δij − 〈ka|v̂|bc〉δij

)
= − 〈jk‖ic〉δab − 〈jk‖bi〉δac + 〈aj‖cb〉δik + 〈ak‖bc〉δij .

(3.204)

Thus we can get a non-zero result only if at least one hole or particle in Φbc
jk

matches the hole or particle in Φa
i , for example

〈Φa
i |Ŵ |Φbc

ik〉 = 〈ak‖bc〉 (a �= b, c) ,

〈Φa
i |Ŵ |Φac

jk〉 = −〈jk‖ic〉 (i �= j, k) ,

〈Φa
i |Ŵ |Φac

ik 〉 = 〈ak‖ac〉 − 〈ik‖ic〉 .

(3.205)

Obviously, we need some help with the detailed evaluation of these formu-
las, and this help is provided by the diagrammatic representation described
in the following chapter.
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Diagrammatic notation

4.1 Time ordering

As we saw in Section 3.8, the second-quantization treatment can be cum-
bersome and error-prone. The generation and manipulation of the various
expressions in this treatment are made much easier by the introduction of a
systematic diagrammatic representation. The purposes of the diagrammatic
notation are thus:

1. to make it easy to list all non vanishing distinct terms in the pertur-
bation sums;

2. to elucidate certain cancellations in these sums;
3. to provide certain systematics for the discussion and manipulation of

the various surviving terms, including classifications that allow us to
group together various types of contribution, perform some partial
summations etc.

Diagrammatic notation originated in quantum field theory, in the form of
Feynman diagrams or graphs, in an explicit time-dependent format. Initial
applications to RSPT were also in time-dependent form, but in them the
time dependence was introduced artificially by a gradual switching-on of the
perturbation from t = −∞ to t = 0 using a switching-on function eαt (with
α > 0). This function takes the place of λ in Ĥ = Ĥ0 + λV̂ and varies from
0 as t → −∞ to 1 as t → 0. It leads to a time sequence in the application of
various operators, and this is indicated in the diagrams by means of a time
axis

t

90



4.2 Slater determinants 91

for the sequence of events. The actual time at which each event occurs
(i.e. an operator acts) is irrelevant; only the sequence is significant.

We shall continue to use the time-independent formulation, but the se-
quence in which operators act (i.e. from right to left) still furnishes us with
a time axis. Thus, if we want to represent the result of the operation of an
operator Û on a function |Φab

ij 〉, we begin with a representation of Φab
ij at the

bottom, followed by a representation of the operator Û above it, leading to
a representation of the result Û |Φab

ij 〉 at the top.
Another common arrangement is to place the time axis horizontally, from

right to left,
t

corresponding to the way in which we normally write a sequence of op-
erators acting on a function, as mentioned above. This was used, for
example, by Paldus and Č́ıžek (1975), but we shall use the more com-
mon vertical arrangement. The only difference is a 90◦ rotation of the
diagrams.

4.2 Slater determinants

We begin with the representation of a Slater determinant (SD). The refer-
ence state (the Fermi vacuum) is represented by nothing, i.e. by a position
on the time axis at which there are no lines or other symbols. Any other
SD, say Φa

i , is represented by vertical or diagonal (see the next section)
directed lines, pointing upward for particles and downward for holes, with
labels identifying the spinorbitals:

Φa
i = i a Φab

ij = i a j b

(the horizontal position of the lines has no significance). If we want to
indicate specifically the ket and bra forms, the following (non-standard)
notation may be used:

|Φa〉 = â†|0〉 = a |Φi〉 = î|0〉 = i
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|Φa
i 〉 = {â†î}|0〉 = i a 〈Φa

i | = 〈0|{̂i†â} = i a

|Φab
ij 〉 = {â†b̂†ĵ î}|0〉 = {(â†î)(b̂†ĵ)}|0〉 = i a j b

etc. The horizontal double line represents the point of operation of the
normal-product operator, and below or above it we have the Fermi vacuum.
Note that there is a phase ambiguity in the last example, since this diagram
could equally represent |Φab

ij 〉 or |Φba
ij 〉. However, the way in which we shall

use the diagrams will be independent of this choice of phase, provided rea-
sonable consistency is maintained. If we want to be more specific, we can
indicate which particle index appears above which hole index:

i a j b

4.3 One-particle operators

4.3.1 Representation of one-particle operators and contractions

Next we consider the representation of operators. We begin with a one-
electron operator in normal product form, say

ÛN =
∑
pq

〈p|û|q〉{p̂†q̂} , (4.1)

acting on a singly excited Slater determinant

|Φa
i 〉 = {â†î}|0〉 . (4.2)

The action and representation of the individual terms in the sum over p, q in
(4.1) will depend on whether p and q are particle or hole indices. We begin
with a particle–particle (pp) term,

〈b|û|c〉{b̂†ĉ} , (4.3)
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for which we obtain (using the generalized Wick’s theorem)

〈b|û|c〉{b̂†ĉ}{â†î}|0〉 = 〈b|û|c〉{b̂†ĉâ†î}|0〉 + 〈b|û|c〉{b̂†ĉâ†î}|0〉
= 〈b|û|c〉b̂†â†îĉ|0〉 + 〈b|û|c〉δac{b̂†î}|0〉
= 0 + 〈b|û|c〉δac|Φb

i〉 . (4.4)

Thus we get a non-zero contribution only from particle–particle terms of the
type

〈b|û|a〉{b̂†â}|Φa
i 〉 = 〈b|û|a〉|Φb

i〉 , (4.5)

which is represented by the diagram

i

a

b

×

Note that the case b = a is included. Represented at the bottom is |Φa
i 〉

and at the top |Φb
i〉, the resulting determinant. The point of action of the

operator is marked by the interaction line (or vertex ) × , the × being
a marker for the particular operator û. Different one-electron operators
can be represented by using different markers, e.g. #, �,

� etc. Again, the horizontal arrangement has no significance and
we could equally well have used

i

a

b

× or, e.g., i
a

b
×

We associate the integral 〈b|û|a〉 with the vertex × as a multiplicative
factor. Note that the bra spinorbital in the integral corresponds to the line
leaving the vertex, while the ket corresponds to the entering line.
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We can view this diagram as a graphical representation of the contraction
process:

〈b|û|c〉{b̂†ĉ} :
c

b
×

|Φa
i 〉 : a i

→
c

b
×

a i

ĉâ† = δac

→ i

a

b

×

The only non-zero contractions are then represented as follows:

î†ĵ :

i

j

δij , âb̂† :
a

b

δab ,

where the left–right order of the operators corresponds to the top–bottom
order of the directed lines, and where a creation operator is represented by an
arrow leaving its point of action (a vertex × or double line )
and an annihilation operator is represented by an arrow entering its point
of action. This representation of contractions tells us automatically which

pairs of lines may be contracted (̂i†ĵ or âb̂†). Any line that is not contracted
or terminated by a vertex (or by the double line) must proceed unchanged
in the appropriate direction throughout the diagram.

Next we consider a hole–hole (hh) term, 〈j|û|k〉{ĵ†k̂}, in (4.1), acting on
|Φa

i 〉. Using the generalized Wick’s theorem, we obtain:

〈j|û|k〉{ĵ†k̂}{â†î}|0〉 = 〈j|û|k〉{ĵ†k̂â†î}|0〉 + 〈j|û|k〉{ĵ†k̂â†î}|0〉
= −〈j|û|k〉k̂â†îĵ†|0〉 + δij〈j|û|k〉{k̂â†}|0〉
= 0 − δij〈j|û|k〉{â†k̂}|0〉
= −δij〈j|û|k〉|Φa

k〉 . (4.6)

The only nonvanishing term of this type is

〈i|û|k〉{̂i†k̂}|Φa
i 〉 = −〈i|û|k〉|Φa

k〉 , (4.7)
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which is represented by

a

k

i

×

This term originates in the contraction

〈j|û|k〉{ĵ†k̂} :
k

j
×

|Φa
i 〉 : i a

→

k

j
×

i a

ĵ†î = δij

→ a

k

i

×

Note that, in the representation of the operator, {ĵ†k̂} = −k̂ĵ†; hence the k

line (the annihilation operator, entering the vertex) is above the j line (the
creation operator, leaving the vertex) and a minus sign appears.

4.3.2 Rules of interpretation

We should note the following rules for the interpretation of the one-particle
vertices.

1. For both the pp and hh cases, the bra in the integral associated
with the vertex corresponds to the outgoing line (and the creation
operator) while the ket corresponds to the incoming line (and the
annihilation operator):

〈j|û|k〉{ĵ†k̂} :
k

j
×

〈b|û|c〉{b̂†ĉ} :
c

b
×
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2. Similarly, the creation operator associated with ÛN corresponds to an
outgoing line (a line leaving the vertex) and the annihilation operator
corresponds to an incoming line (a line terminating at the vertex).
Again, this is true for both the pp and hh cases.

3. We have to associate a phase factor −1 with the case in which one
hole is replaced by another (the hh case).

4. The case k = i is included in the hh diagram, since this gives

〈i|û|i〉{̂i†î}|Φa
i 〉 = −〈i|û|i〉̂îi†|Φa

i 〉 = −〈i|û|i〉|Φa
i 〉 : a

i

i

×

In formalisms that do not take advantage of normal ordering and Wick’s
theorem and that therefore compute terms for Û rather than ÛN, the con-
tribution of the 〈i|û|i〉 integral is

〈i|û|i〉̂i†î|Φa
i 〉 = 0 , (4.8)

and the corresponding diagram is called an exclusion-principle-violating
(EPV) diagram. The contribution −〈i|û|i〉|Φa

i 〉, according to the ordinary
interpretation of the diagram, is included nevertheless; one is relying on
its cancellation with another EPV diagram that results from contractions
within the creation and annihilation operators of Û (which are excluded if
we use ÛN). So in this case we have the additional hh terms

〈j|û|k〉{ĵ†k̂â†î}|0〉 = δjk〈j|û|k〉|Φa
i 〉 , (4.9)

namely, terms of the type +〈k|û|k〉|Φa
i 〉 (k �= i), represented by a diagram

with a “bubble”,

i ak× (k �= i).

This diagram represents the difference between Û |Φa
i 〉 and ÛN|Φa

i 〉. Note
that the case k = i should be excluded, since it corresponds to î†îâ†î|0〉 = 0
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and is an EPV term (containing two holes i at the same time), but if we
leave it in, it cancels the previously mentioned EPV diagram exactly:

a

i

i

× + i ai× = 0.

−〈i|û|i〉|Φa
i 〉 +〈i|û|i〉|Φa

i 〉

(4.10)

Therefore we eliminate the k �= i restriction in both cases and include EPV
diagrams in the summation. However, if we consistently use the normal-
product form of operators, the first EPV diagram (on the left in the above
figure) is all right as it stands, since it originates in {̂i†î}|Φa

i 〉 = −î̂i†|Φa
i 〉 =

−|Φa
i 〉, and so we do not need to include bubble diagrams; they would just

provide the added term(∑
k

〈k|û|k〉
)
|Φa

i 〉 = 〈0|Û |0〉|Φa
i 〉 = (Û − ÛN)|Φa

i 〉 , (4.11)

as noted above.

4.3.3 The complete one-particle operator

We have looked at the pp and hh terms of ÛN|Φa
i 〉. Next we will look at the

ph and hp terms, beginning with ph:

〈b|û|j〉{b̂†ĵ}{â†î}|0〉|Φa
i 〉 = 〈b|û|j〉{b̂†ĵâ†î}|0〉

= 〈b|û|j〉â†b̂†ĵ î|0〉
= 〈b|û|j〉|Φab

ij 〉

(no contraction can contribute in this case), represented by

i a
jb

× ,

showing that the resulting determinant is |Φab
ij 〉 (for the phase factor, we use

the convention that a hole and a particle joined at the same vertex, i.e. on
the same path, are in the same vertical position in |Φab···

ij··· 〉). In principle we
should have omitted the cases j = i and/or b = a, but it is not necessary to
do this explicitly since EPV diagrams of this type,
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i a
ib

× , i a
ja

× , i a
ia

× ,

give a vanishing SD anyway.
The hp term is

〈j|û|b〉{ĵ†b̂}{â†î}|0〉 = 〈j|û|b〉{ĵ†b̂â†î}|0〉 + 〈j|û|b〉{ĵ†b̂â†î}|0〉

+ 〈j|û|b〉{ĵ†b̂â†î}|0〉 + 〈j|û|b〉{ĵ†b̂â†î}|0〉
= 〈j|û|b〉{0 + δij × 0 + δab × 0 + δijδab}|0〉
= δijδab〈j|û|b〉|0〉

(4.12)

and is nonzero only for

〈i|û|a〉{̂i†â}|Φa
i 〉 = 〈i|û|a〉|0〉 , (4.13)

which is represented by

ai
×

,

showing clearly that the result of the operation involves the vacuum state |0〉.
For both the ph and hp terms, the integral associated with ×

follows the same interpretation rules as for the pp and hh cases; note the
mnemonics in parentheses:

incoming line ↔ annihilation operator ↔ ket state (IAK)
outgoing line ↔ creation operator ↔ bra state (OCB)

Of the four cases considered, only the hole–hole case requires a factor −1.
The complete result for ÛN|Φa

i 〉 is

∑
b

i
a

b
×

〈b|û|a〉|Φb
i〉

+
∑

j

a
j

i
×

−〈i|û|j〉|Φa
j 〉

+
∑
b,j

i a
jb

×

〈b|û|j〉|Φab
ij 〉

+
ai

×

〈i|û|a〉|0〉

(without restrictions on any of the summation indices).
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A very simple example is provided by the operation of ÛN on the Fermi
vacuum state:

ÛN|0〉 =
∑
a,i

i a
×

=
∑
a,i

〈a|û|i〉|Φa
i 〉 . (4.14)

Only the ph term contributes here, since this is the only term in which we
can have the vacuum state below the interaction.

For another example, we consider the operation of ÛN on a doubly ex-
cited SD:

ÛN|Φab
ij 〉 =

∑
c

i
a

c
× j b +

∑
k

a
k

i
× j b

+
∑

c

i a j
b

c
× +

∑
k

i a b
k

j
×

+
∑
k,c

i a j b
k c

× +
ai

× j b

+ i a
bj
× +

bi
× j a + i b

aj
× .

(4.15)

In general, we can represent the operator ÛN as

ÛN =
∑
a,b

a
b× +

∑
i,j

j
i

× +
∑
i,a

i a× +
∑
i,a

ai
× . (4.16)

For Û there is one more term:

Û = ÛN + 〈0|Û |0〉 = ÛN +
∑

i

i× . (4.17)
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A diagram in (4.16) is to be contracted in all valid ways with whichever
state diagram exists below it and any state diagram we desire to be above
it. For example,

〈Φb
j |ÛN|Φa

i 〉 = δij i
a

b
× + δab a

j

i
×

= δij 〈b|û|a〉 − δab 〈i|û|j〉 ,

(4.18)

as we already know.
To avoid having to write summation signs we introduce the convention

that any unlabeled line is summed over all possible hole or particle indices,
hole indices for downward arrows and particle indices for upward arrows.
Thus the representation of ÛN is written without labels in the form

ÛN = × + × + × + × . (4.19)

4.3.4 Products of one-particle operators

Consider the vacuum expectation value of a product of two one-particle
operators, each of which is in normal-product form,

ÛN =
∑
pq

〈p|û|q〉{p̂†q̂} and ẐN =
∑
pq

〈p|ẑ|q〉{p̂†q̂} .

Using the markers × and # for û and ẑ, respectively, the ex-
pectation value can be evaluated from

〈0|ÛNẐN|0〉 =

#

×
=

∑
i,a

〈i|û|a〉〈a|ẑ|i〉 . (4.20)

(The notation will be modified later to include energy denominators.) No
other diagram is possible here, since we have to have the Fermi vacuum at
both top and bottom.
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If we had used Û , Ẑ instead of ÛN, ẐN, we would have had the additional
term

×

#
=

∑
i,j

〈i|û|i〉〈j|ẑ|j〉 = 〈0|Û |0〉〈0|Ẑ|0〉 . (4.21)

Note that bubbles can carry hole labels only, as indicated by the sense of the
circles as they pass through the vertices. Since 〈0|ÛN|0〉 = 0 for any normal-
product operator, the mixed terms 〈0|ÛN|0〉〈0|Ẑ|0〉 and 〈0|Û |0〉〈0|ẐN|0〉 need
not be considered (and, indeed, no corresponding diagrams can be con-
structed).

The complete operator product ÛNẐN is represented by the diagrams in
Fig. 4.1, which were obtained by contracting the ÛN diagrams at the top
with the ẐN diagrams below in all possible ways. For the Û Ẑ product there
are in addition disconnected diagrams in Fig. 4.2 (i.e. diagrams consisting
of two or more disconnected parts). The only diagrams with nonzero vac-
uum expectation values are (21) and (34). As noted previously, the latter
represents

〈0|Û Ẑ|0〉 − 〈0|ÛNẐN|0〉 = 〈0|Û |0〉〈0|Ẑ|0〉 . (4.22)

Particularly interesting is the vacuum expectation value of the commuta-
tor of two operators. Because of the cancellation of the disconnected terms
in such a commutator, only the normal product part survives:

〈0|[Û , Ẑ]|0〉 =
×

#
+

×

#
−

#

×
−

#

×

=
×

#
−

#

×

= 〈0|[ÛN, ẐN]|0〉

=
∑
i,a

(
〈i|û|a〉〈a|ẑ|i〉 − 〈i|ẑ|a〉〈a|û|i〉

)

= 2i Im
(∑

i,a

〈i|û|a〉〈a|ẑ|i〉
)

, (4.23)



102 Diagrammatic notation

#

×

1

×
#

2

×
#

3

#

×

4

×
#

5

×
#

6

×
#

7

#

×

8

×
#

9

×
#

10

×
#

11

×
#

12

×
#

13

×
#

14

×
#

15

×
#

16

#

×

17

×
#

18

×
#

19

×
#

20

#

×

21

×
#

22

#

×

23

×
#

24

×
#

25

Fig. 4.1. Diagrams representing the operator product ÛNẐN.

where “Im” indicates the imaginary part. Obviously, if all the integrals are
real then the vacuum expectation value of the commutator vanishes. This
result is typical of the simplifications that are possible when working with
commutators rather than with individual operator products.

In preparation for extending the treatment of phase factors, we shall con-
sider several examples of the matrix elements of operator products. First,
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×
#

26

×
#

27

×
#

28

×
#

29

#

×

30

#

×

31

#

×

32

#

×

33

#

×

34

Fig. 4.2. Additional diagrams for Û Ẑ.

let us take the relatively simple example of ÛNẐN|0〉, which can be repre-
sented by

ÛNẐN|0〉 = (i)
(b)

(a)

#

× +
(i)

(j)
(a)

#

×

∑
abd

〈a|û|b〉〈b|ẑ|i〉|Φa
i 〉 −

∑
aij

〈j|û|i〉〈a|ẑ|j〉|Φa
i 〉

+
(i)(a)

×

#

+ (j) (b)

#

(i) (a)
× .

∑
ia

〈i|û|a〉〈a|ẑ|i〉|0〉
∑
abij

〈a|û|i〉〈b|ẑ|j〉|Φab
ij 〉 (4.24)

In this equation we introduce another (nonstandard) notational convention:
labels in parentheses identify the corresponding summation indices in the
accompanying algebraic expressions. The above result was obtained by con-

tracting the # diagram for ZN (the only one with the vacuum state

below it) with those UN diagrams that can be attached to it without leaving
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any lines extending to the bottom. The only minus sign is for the

combination in the second diagram, as noted in subsection 4.3.2. The phase
of the resulting SD in the last diagram is obtained from the condition that
surviving hole and particle lines at the top are paired vertically in |Φab···

ij··· 〉 if
they are part of the same path.

Now consider the example 〈Φb
i |ÛNẐN|Φa

i 〉. Here we have to connect the
fragments

i b and i a

(note the same hole label i in both fragments) through the operator frag-
ments

×
,

×
, × ,

×

,

#
,

#
, #,

#

,

with the × interaction line above the # line. The surviving
terms are shown in Fig. 4.3. We have a total of nine diagrams, of which the
last three contribute only in the special case a = b. Among these are some
unusual cases. Diagram 4 is a true EPV case, in which the intermediate
state (after the operation of ẐN but before ÛN) has two holes in state i.
Clearly this diagram should not contribute, but if we apply the diagram
evaluation rules we do get a contribution, 〈i|û|a〉〈b|ẑ|i〉. At the same time,
diagram 2 contains an EPV term when j = i, which should not contribute
either (since it has two holes in i in the intermediate state), but the rules
give −〈i|û|a〉〈b|ẑ|i〉 (for j = i). Thus these two spurious contributions cancel
exactly. We have the option either to

1. restrict the summation in diagram 2 to j �= i and leave out diagram
4, or to

2. use an unrestricted sum for 2 and include 4.

The result is the same, even though the second choice includes the evaluation
of two terms that should have been left out. In diagrammatic many-body
theory we always use option 2. Other examples of this choice will be en-
countered later.

We also need to re-emphasize that the horizontal arrangement in a dia-
gram is not significant. Any diagrams that can be brought to congruence
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i

a

(c)

b

#

×1

i
a(j)

b

#

×2 i b

ai
#

×3

∑
c

〈b|û|c〉〈c|ẑ|a〉 −
∑

j

〈j|û|a〉〈b|ẑ|j〉 〈b|û|i〉〈i|ẑ|a〉

i b

ai#

×4 i

i
a

b

#

×5
i

i
a

b

#

×6

〈i|û|a〉〈b|ẑ|i〉 −〈i|û|i〉〈b|ẑ|a〉 −〈b|û|a〉〈i|ẑ|i〉

i

(j)

i

δab
#

×7

δab

i

(c) i#

×8

i δab (j)(c)
#

×9

δab

∑
j

〈j|û|i〉〈i|ẑ|j〉 −δab

∑
c

〈i|û|c〉〈c|ẑ|i〉 δab

∑
cj

〈j|û|c〉〈c|ẑ|j〉

Fig. 4.3. Diagrams for the evaluation of the matrix element 〈Φb
i ÛNẐNΦa

i 〉.

by changing the horizontal positions of lines and vertices are not distinct.
For example,

�

#

×

is equivalent to �

#

×

,

#

×
is equivalent to

#

×
.
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4.3.5 Phase factors

The example in Fig. 4.3 raises the important question of phase factors. We
have put a minus sign in the expressions corresponding to diagrams 2 and 8,
even though our current rule does not call for it. The need for a minus sign
to be associated with diagram 2 can be seen from the following:

〈0|{̂i†b̂}{ĵ†â}{b̂†ĵ}{â†î}|0〉 = 〈0|{̂i†b̂ĵ†âb̂†ĵâ†î}|0〉

= −〈0|{̂i†îb̂b̂†ĵ†ĵââ†}|0〉 = −1 . (4.25)

Here we have unscrambled the operator product into a sequence of con-
tracted pairs of operators, taking care that the order of the operators within
each contracted pair is not changed. The parity of the unscrambling per-
mutation provides the sign factor. As noted in Section 3.8, the sign factor
can also be determined from the parity of the number of intersections of the
contraction lines.

To be able to determine the sign associated with a particular diagram
directly from the diagram we need a more general sign rule. In developing
such a rule we consider the notion of a path in the diagram (see Paldus
and Č́ıžek 1975). A path is a sequence of connected lines, including any

(external) connection or that indicates particle–hole pairs in

the initial or final state. In the example of Fig. 4.3, diagrams 1, 2 and 5–8
each consist of a single closed path (or loop), while diagrams 3, 4 and 9 have
two closed paths each. Each closed path represents a sequence of creation
and annihilation operators connected alternately either by contraction or by
belonging to the same original creation–annihilation pair (i.e., a vertex or
external connection) in a normal product. For example, in diagram 2 the
connection pattern is

î† b̂ ĵ† â b̂† ĵ â† î , corresponding to

î†b̂ ĵ†â

b̂†ĵ

â†î

,
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while in diagram 4 we have

î† b̂ î† â b̂† î â† î , corresponding to

î†b̂ î†â

b̂†î
â†î

,

which rearranges to decouple the two loops without change of sign, since
this only requires pairs of operators (vertices) to be moved past other pairs:

î† b̂ b̂† î î† â â† î .

Entangled loops can always be disentangled with an even permutation mov-
ing pairs of operators (each corresponding to a vertex or an external con-
nection) past other pairs. The sign factors can thus be computed separately
for each loop and then multiplied together. We shall now show that the sign
factor for each loop is (−1)h−1, where h is the number of hole lines in the
loop.

The left-most pair of creation–annihilation operators corresponding to any
loop must be associated with the topmost feature of the loop, say

i a

î†â

or i a

î†â

.

Similarly, the rightmost pair is associated with the bottom feature, say

n f

f̂ †n̂

or n f

f̂ †n̂

.

The general form of the operator sequence is

î† â p̂† q̂ r̂† ŝ . . . f̂ † n̂ ,
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where each of p, q, r, s, . . . may refer to either a particle or a hole. To allow
full contraction, the interior p̂†q̂r̂†ŝ · · · must contain an even number of hole
operators k̂†, k̂ as well as an even number of particle operators ĉ, ĉ†. We
consider first the case of no interior hole operators. Then the diagram must
have a contraction between î† and n̂ (providing a factor δin) and, for a
nonzero result, must have the general form

î† â â† b̂ b̂† ĉ ĉ† · · · f̂ f̂ † î , represented by the loop i

f

c

b

a

.

This example clearly has a + sign. Thus, for a loop with one hole line
(h = 1) we get the phase factor +1 = (−1)h−1, as required.

Next we consider the case of two hole lines, i.e. two pairs of contracted
hole operators. If the two interior hole operators are adjacent we have the
pattern

î† â â† · · · ĉ ĵ† î ĉ† · · · f̂ f̂ † ĵ , represented by the loop

i

j

f

c

a

Obviously unscrambling the contractions in this product produces a change
of sign, so that we still have a phase factor (for h = 2) equal to (−1)h−1 =
−1. If the two interior hole operators are not adjacent, but have some pairs
of particle operators between them, as in
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î† â â† · · · ĉ ĵ† d̂ d̂† î ĉ† · · · f̂ f̂ † ĵ, represented by the loop

c,d

i

j

f

a

or

î† â â† . . . ĉ ĵ† d̂ ĉ† ĵ d̂† . . . f̂ f̂ † î , represented by the loop

i j,

f

d
c

a

then we find the same sign factor as in the above simpler pattern. The same
result is also obtained if more pairs of particle operators appear in between
the hole operators.

Similarly, if more hole lines are introduced then we obtain another factor
−1 for each additional hole line, giving a phase factor (−1)h−1 for a loop
with h hole lines. For l loops with h1, h2, . . . , hl hole lines, respectively, we
thus get

l∏
i=1

(−1)hi−1 = (−1)h−l , (4.26)

where h =
∑l

i=1 hi is the total number of hole lines.
Using the phase factor (−1)h−l we can easily see that alternative pair-

ings of open lines (i.e. alternative external connections) produce equivalent
results, so that we do not have to indicate the external connections explicitly.



110 Diagrammatic notation

For example,

j b
i a

#

× = j b
i a

#

× = j b
i a

#

×

〈a|û|i〉〈b|ẑ|j〉|Φab
ij 〉 = −〈a|û|i〉〈b|ẑ|j〉|Φab

ji 〉 .

(l = 2, h = 2) (l = 1, h = 2)
(4.27)

Thus the results are independent of how the external connections are made,
as long as the phase factors are calculated from the formula (−1)h−l for
whichever connections are chosen. Therefore we can dispense henceforth
with specifying external connections in open diagrams. We can also dis-
pense, in general, with the unconventional double-bar notation, which we
have used temporarily as a teaching tool.

Finally, we show how the phase-factor rule helps in demonstrating the
cancellation of EPV diagrams. Again we use the example of Fig. 4.3, in the
special case a = b, i.e. we evaluate the matrix element 〈Φa

i |ÛNẐN|Φa
i 〉. We

show the cancellation of the EPV components of diagram 9 with the EPV
components of diagrams 2, 4 and 8:

i a a j
#

×9
(l = 2) cancels with i

a
a

j
#

×2
(l = 1) ,

i a c i
#

×9
(l = 2) cancels with a

i
i

c
#

×8
(l = 1) ,

i a a i
#

×9
(l = 2) +

i a

a i#

×4
(l = 2) cancels with
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i
a
a

i
#

×2
(l = 1) + a

i
i

a
#

×8
(l = 1).

In each case the integrals involved are the same and the number of hole lines
is the same but the number of loops differs by one, so we get cancellation in
each set.

4.4 Two-particle operators

4.4.1 Goldstone diagrams for a two-particle operator

We now turn to a two-particle operator in normal-product form,

Ŵ = 1
2

∑
pqrs

〈pq|rs〉{p̂†q̂†ŝr̂} = 1
4

∑
pqrs

〈pq‖rs〉{p̂†q̂†ŝr̂} . (4.28)

We shall first use the 〈pq|rs〉 form, with the factor 1
2 , and later go over to the

antisymmetric form 〈pq‖rs〉 with factor 1
4 . This operator will be denoted by

an interaction line connecting two half-vertices at the same level (i.e. the
same point on the time axis), for example

.

The two half-vertices and the interaction line constitute a single vertex.
Each individual half-vertex will have one incoming and one outgoing line,
each of which may be a particle line or a hole line. The association of line
labels with the two-electron integral indices and the creation or annihilation
operators follows the same rule as for one-body vertices:

bra index ↔ creation operator ↔ outgoing line
ket index ↔ annihilation operator ↔ incoming line

but with the added feature for the two-body case that

electron 1 ↔ left half-vertex
electron 2 ↔ right half-vertex

Thus for the term 〈pq|rs〉{p̂†q̂†ŝr̂} we have the association

p̂† ↔ left outgoing line , q̂† ↔ right outgoing line ,
r̂ ↔ left incoming line ŝ ↔ right incoming line .
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The integral indices associated with a two-body vertex are assigned accord-
ing to the scheme

〈 left–out right–out | left–in right–in 〉,

while the corresponding operator product can be described by

{(left–out)†(right–out)†(right–in)(left–in)}.

Diagrams employing this representation of the two-body interaction (which
is based on non-antisymmetrized integrals) are called Goldstone diagrams.

Taking into consideration the different possible assignments of particle
and hole lines, the Ŵ operator is represented by

Ŵ = + + + +

+ + + + + ,

(4.29)

where summations over all appropriate indices are implied by the unlabeled
lines. Note that we have left out diagrams that can be obtained from one of
the above diagrams by interchanging the left and right half-vertices, which
corresponds to exchanging the names of electrons 1 and 2, e.g.

= .

These equivalences will be taken care of by weight factors, as we discuss
next.

So far we have ignored the factor 1
2 in front of the sum for Ŵ , as well as the

collection of equivalent terms. As an example, take the diagram fragment

(a)

(b) (j)

(i)
= 1

2

∑
abij

〈bi|aj〉{b̂†î†ĵâ} . (4.30)

There is an equivalent fragment,

(j)

(i) (a)

(b)
= 1

2

∑
abij

〈ib|ja〉{̂i†b̂†âĵ} , (4.31)
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which is exactly equal to it, since 〈ib|ja〉 = 〈bi|aj〉 and b̂†î† = −î†b̂†, ĵâ =
−âĵ. Thus we agree to use just one of the two equivalent fragments and so
remove the factor 1

2 . However, if we consider the example

(a)

(b)

(c)

(d)
=

1
2

∑
abcd

〈bd|ac〉{b̂†d̂†ĉâ} , (4.32)

there is no other diagram equivalent to it since its mirror image in a vertical
plane bisecting the vertex is congruent with it, and so the factor 1

2 must
be retained. However, a rigorous treatment of the weight factor problem
cannot deal with diagram fragments, but must involve complete diagrams.
This question will be dealt with further in the next subsection.

4.4.2 Vacuum expectation values of products of two-particle

operators

Most of the diagrams with which we shall deal in many-body perturbation
theory involve vacuum expectation values. In particular, the energy of a
many-body system is given by sums of diagrams representing vacuum ex-
pectation values. To take a simple example, we shall consider the vacuum
expectation value of Ŵ 2. (So far we have ignored the question of energy
denominators, which represent the resolvent operators in the energy expres-
sions; see (2.71). The diagrammatic representation of these denominators
will be discussed in Chapter 5.) We shall first evaluate this quantity alge-
braically, using the generalized Wick’s theorem, in order to make sure that
we have the correct numerical factors and phases:

〈0|Ŵ 2|0〉 = 1
2

∑
pqrs

〈pq|rs〉1
2

∑
tuvw

〈tu|vw〉〈0|{p̂†q̂†ŝr̂}{t̂†û†ŵv̂}|0〉

= 1
4

∑
pqrstuvw

〈pq|rs〉〈tu|vw〉
∑

contractions

〈0|{p̂†q̂†ŝr̂t̂†û†ŵv̂}|0〉 . (4.33)

Now we consider how the contractions are to be made. The only two possi-
bilities for obtaining nonzero fully contracted terms without using internal
contractions among the operators of either of the two original normal prod-
ucts {p̂†q̂†ŝr̂} and {t̂†û†ŵv̂} are:

1. contract p̂† and q̂† with ŵ and v̂, in either order, which requires that
p, q, w, v be hole indices,

2. contract ŝ and r̂ with t̂† and û†, in either order, which requires that
s, r, t, u be particle indices.
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Thus there are four distinct contractions,

〈0|Ŵ 2|0〉 = 1
4

∑
abcdijkl

〈ij|ab〉〈cd|kl〉
∑

contractions

〈0|{̂i†ĵ†b̂âĉ†d̂† l̂k̂}|0〉

= 1
4

{ ∑
abcdijkl

〈ij|ab〉〈cd|kl〉〈0|̂i†ĵ†b̂âĉ†d̂† l̂k̂|0〉

+
∑

abcdijkl

〈ij|ab〉〈cd|kl〉〈0|̂i†ĵ†b̂âĉ†d̂† l̂k̂|0〉

+
∑

abcdijkl

〈ij|ab〉〈cd|kl〉〈0|̂i†ĵ†b̂âĉ†d̂† l̂k̂|0〉

+
∑

abcdijkl

〈ij|ab〉〈cd|kl〉〈0|̂i†ĵ†b̂âĉ†d̂† l̂k̂|0〉
}

= 1
4

{∑
abij

〈ij|ab〉〈ab|ij〉 −
∑
abij

〈ij|ab〉〈ba|ij〉

−
∑
abij

〈ij|ab〉〈ab|ji〉 +
∑
abij

〈ij|ab〉〈ba|ji〉
}

. (4.34)

The first and fourth terms are equal (by exchange of electrons 1 and 2 in
the second integral), and so are the second and third. Thus the result is

〈0|Ŵ 2|0〉 = 1
2

∑
abij

〈ij|ab〉
(
〈ab|ij〉 − 〈ab|ji〉

)
. (4.35)

The diagrammatic description of this matrix element involves two Ŵ ver-
tices, one above the other, with the vacuum at top and bottom. The two

vertices must therefore have the forms for the top vertex and

for the bottom vertex and can be connected in four different ways,

corresponding to the four contraction schemes in (4.34):
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As in (4.34), the first and fourth diagrams are equivalent (by exchange of
the two half-vertices at the top or bottom) and so are the second and third.
Thus we are left with two diagrams, often referred to as the direct and
exchange diagrams, respectively,

〈0|Ŵ 2|0〉 = + ,

1
2

∑
abij

〈ij|ab〉〈ab|ij〉 −1
2

∑
abij

〈ij|ab〉〈ab|ji〉

(l = 2, h = 2) (l = 1, h = 2)

(4.36)

in agreement with the algebraic derivation. The minus sign for the exchange
diagram is obtained from our phase-factor rule (−1)h−l, as shown. This rule,
which we derived originally for diagrams with one-body vertices only, applies
equally to diagrams containing two-body vertices. Note also that the EPV
terms, in which i = j and/or a = b, cancel between the direct and exchange
terms, justifying the use of unrestricted summations.

The factor 1
2 derives from the fact that each of these diagrams is (or can

be redrawn to be) symmetric under reflection in a vertical plane through its
middle. It compensates for the fact that terms such as

a i j b and b j i a ,

1
2〈ij|ab〉〈ab|ij〉 1

2〈ji|ba〉〈ba|ji〉

which are equal, will be included separately in the unrestricted sum over
i, j, a, b. More generally, we note that the original coefficient 1

2 in the sum
1
2

∑
pqrs〈pq|rs〉{p̂†q̂†ŝr̂} was introduced because only distinct terms should

be summed; a simultaneous exchange p ↔ q, r ↔ s (which corresponds to
the exchange of electron labels 1 and 2) does not produce a distinct term.
The same situation holds for the diagrams. Each distinct term should be in-
cluded once but, because of the unrestricted summations, some are included
more than once and the weight factor is needed to compensate. The restric-
tion to inequivalent diagrams eliminates the double counting for asymmetric
diagrams, but we need a factor 1

2 for each diagram or unlinked part of a di-
agram that can be written in a form symmetric under left–right reflection.

To provide further examples of diagram construction, and of rules for di-
agram interpretation and phase factor and weight factor determination, we
next consider the vacuum expectation value of a product of three two-body
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operators, 〈0|Ŵ 3|0〉. (We should note again that in this chapter we are
leaving out an important diagram interpretation aspect relating to the use
of these diagrams in perturbation theory, i.e. the incorporation of the re-
solvent operators and their concomitant denominators. This aspect will be
introduced in Chapter 5.) Each diagram for this matrix element contains
three two-body vertices, of which the top and bottom vertices must have
the same form as in the 〈0|Ŵ 2|0〉 case. To allow full contraction with no
open lines remaining, the middle vertex must have two lines above and two
lines below the vertex, for which there are the four possibilities

, , , .

The first choice produces two diagrams, referred to as particle ladder di-
agrams (shown with their algebraic interpretations),

(i) (j)
(c)

(a)

(d)

(b)
= 1

2

∑
abcdij

〈ij|ab〉〈ab|cd〉〈cd|ij〉
(

l = 2, h = 2,

symmetric

)
,

(i) (j)
(c)

(b)

(d)

(a)

= −1
2

∑
abcdij

〈ij|ab〉〈ab|dc〉〈cd|ij〉
(

l = 1, h = 2,

symmetric

)
.

The second diagram is the exchange version of the first, obtained in this case
by interchanging the endpoints of the incoming particle lines at the middle
vertex (any alternative exchange produces an equivalent diagram).

Using the second choice for the middle vertex, we obtain the hole ladder
diagrams,

(a) (b)
(k)

(i)

(l)

(j)
= 1

2

∑
abijkl

〈ij|ab〉〈kl|ij〉〈ab|kl〉
(

l = 2, h = 4,

symmetric

)
,

(a) (b)

(i)

(l)

(j)

(k)
= −1

2

∑
abijkl

〈ij|ab〉〈lk|ij〉〈ab|kl〉
(

l = 1, h = 4,

symmetric

)
.

Here also, we have a direct and an exchange diagram.
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The third and fourth choices for the middle vertex, taken together, pro-
duce eight diagrams, referred to as ring diagrams (the name is taken from
the shape of the last diagram of this set),

(a) (j)
(k)

(i)

(c)

(b)
= −

∑
abcijk

〈ij|ab〉〈kb|ic〉〈ac|kj〉
(

l = 2, h = 3,

asymmetric

)
,

(a) (j)
(i)

(k) (c)

(b)
=

∑
abcijk

〈ji|ab〉〈kb|ic〉〈ac|kj〉
(

l = 1, h = 3,

asymmetric

)
,

(a) (j)

(i)

(k) (c)

(b)
=

∑
abcijk

〈ij|ab〉〈kb|ic〉〈ac|jk〉
(

l = 1, h = 3,

asymmetric

)
,

(a) (j)
(i) (b)

(c)(k)
=

∑
abcijk

〈ij|ab〉〈bk|ic〉〈ac|kj〉
(

l = 1, h = 3,

asymmetric

)
,

(a)
(b)

(k) (c)

(i)

(j)
= −

∑
abcijk

〈ij|ab〉〈bk|ic〉〈ac|jk〉
(

l = 2, h = 3,

asymmetric

)
,

(a)
(c)

(i) (b)

(k)

(j)
= −

∑
abcijk

〈ji|ab〉〈kb|ci〉〈ac|kj〉
(

l = 2, h = 3,

asymmetric

)
,

(a) (j)
(c)

(b)

(k)

(i)
= −

∑
abcijk

〈ji|ab〉〈kb|ic〉〈ac|jk〉
(

l = 2, h = 3,

asymmetric

)
,

(a) (j)
(i) (b)

(k) (c)
=

∑
abcijk

〈ji|ab〉〈kb|ci〉〈ac|jk〉
(

l = 3, h = 3,

asymmetric

)
.
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If the first of these eight diagrams is considered as the direct case then the
next three are single exchange, the following three double exchange and the
last one triple exchange. One could, in fact, take any of these eight as direct,
and there would still be three single, three double and one triple exchange
relative to it. In general, an exchange diagram is obtained by exchanging
the terminating points of the two incoming lines or the starting points of
the two outgoing lines at any two-body vertex.

4.4.3 Hugenholtz diagrams

The principal problem with the Goldstone representation is the rapid growth
in the number of distinct diagrams as the number of interaction vertices
increases, reflecting the individual listing of each possible exchange. There
is also some difficulty in making sure that all those distinct possibilities have
been listed exactly once, since it is not always easy to determine whether two
diagrams are equivalent. However, the advantage of Goldstone diagrams is
the straightforward determination of phase factors.

The difficulties associated with the use of the Goldstone representation can
be overcome by basing the analysis on the antisymmetric integrals 〈pq‖rs〉
(the final form in (4.28)). Since the exchange contribution is incorporated
within each antisymmetrized integral, such an approach leads to a much
smaller number of distinct diagrams. The diagrams using this representa-
tion of the Ŵ operator are called Hugenholtz diagrams (Hugenholtz 1957).
They maintain the usual (Goldstone) form for one-body operators but rep-
resent the two-body vertex as a single large dot with two incoming and two
outgoing lines (each of which can be a particle or hole line). The labels
on the outgoing lines appear in the bra part of the antisymmetrized inte-
gral, while the incoming labels appear in the ket part. The order of the
labels in each part is indeterminate, and therefore the phase of the corre-
sponding algebraic interpretation is indeterminate. (We shall deal with this
phase-factor problem in the next subsection.) The correspondence between
the Goldstone and Hugenholtz representations of the various terms in the
Ŵ operator, including the associated integrals (ignoring weight and phase
factors) is shown in Fig. 4.4.

The Hugenholtz representation of the 〈0|Ŵ 2|0〉 matrix element has just
one distinct diagram instead of two,

〈0|Ŵ 2|0〉 = = 1
4

∑
abij

〈ij‖ab〉〈ab‖ij〉 . (4.37)
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Goldstone Hugenholtz

c

a

d

b
〈ab|cd〉

c

a

d

b 〈ab‖cd〉 or 〈ab‖dc〉

i

k

j

l
〈kl|ij〉 i

k

j

l
〈kl‖ij〉 or 〈kl‖ji〉

b

a i

j
〈aj|bi〉

ia

b j
〈aj|ib〉




b

a i

j
〈aj‖bi〉 or 〈aj‖ib〉

b

a ic
〈ac|bi〉

b

a i

c

〈ac‖bi〉 or 〈ac‖ib〉

i

j

ka
〈ja|ik〉 i k

j

a

〈ja‖ik〉 or 〈ja‖ki〉

b

a

c i
〈ai|bc〉 b i

a

c

〈ai‖bc〉 or 〈ai‖cb〉

i

j a k
〈jk|ia〉 j k

i

a

〈jk‖ia〉 or 〈jk‖ai〉

ia jb 〈ab|ij〉
a j

i b
〈ab‖ij〉 or 〈ab‖ji〉

a i b j 〈ij|ab〉 a j

i b
〈ij‖ab〉 or 〈ij‖ba〉

Fig. 4.4. The correspondence between the Goldstone and Hugenholtz diagrams for
the Ŵ operator and their associated integrals (the weights and phase factors have
been left out).



120 Diagrammatic notation

Expansion of the antisymmetrized integrals in terms of ordinary integrals
gives four terms, which are equal in pairs, reproducing the two-term result
obtained with Goldstone diagrams, (4.36). The weight factor 1

4 is obtained
by counting the number of pairs of equivalent lines in the diagram: a pair
of lines is equivalent if they connect the same pair of vertices in the same
direction. Each pair of equivalent lines contributes a factor 1

2 . The dia-
gram for 〈0|Ŵ 2|0〉 has two such pairs (two equivalent particle lines and two
equivalent hole lines), resulting in a weight factor 1

4 .
The power of the Hugenholtz representation is easily seen in the evaluation

of 〈0|Ŵ 3|0〉. Instead of the 12 diagrams of the Goldstone representation, we
obtain just three, corresponding to the particle ladder, the hole ladder and
the ring diagrams, respectively:

(i) (j)
(c) (d)

(a) (b)
= ±1

8

∑
abcdij

〈ij‖ab〉〈ab‖cd〉〈cd‖ij〉 ,

(a) (b)
(k) (l)

(i) (j)
= ±1

8

∑
abijkl

〈ij‖ab〉〈kl‖ij〉〈ab‖kl〉 ,

(a) (i)
(c) (k)

(b) (j)
= ±

∑
abcijk

〈ij‖ab〉〈kb‖jc〉〈ac‖ik〉 .

The last diagram replaces all eight Goldstone ring diagrams.
It is obvious that the Hugenholtz representation reduces the number of

diagrams considerably. Furthermore, it is much easier to list all the distinct
diagrams in this scheme. The usual approach is first to list all Hugenholtz
skeletons, which are diagrams without the arrows. For the 〈0|Ŵ 3|0〉 matrix
element we have just one skeleton,

.
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Arrows are then added in all distinct ways to produce all the distinct dia-
grams. It is quite easy to tell whether two diagrams are distinct: any two
diagrams are equivalent if they have the same connection pattern, with the
same senses of the arrows. In other words, two diagrams are equivalent if
one can be deformed into the other without changing the vertical sequence
of the vertices or the sense of the arrows. The weight factor is also easy
to determine, by counting the number of equivalent line pairs. The major
disadvantage is that Hugenholtz diagrams do not immediately specify the
phase of the corresponding algebraic expression.

4.4.4 Antisymmetrized Goldstone diagrams

A solution to the phase problem of Hugenholtz diagrams is obtained by
converting each distinct Hugenholtz diagram into just one Goldstone-like
diagram and interpreting each two-body vertex in this Goldstone diagram
in terms of antisymmetrized integrals 〈pq‖rs〉 instead of ordinary integrals
〈pq|rs〉. These antisymmetrized Goldstone (ASG) diagrams (Brandow 1967)
are obtained by expanding each large dot (two-body vertex) of the Hugen-
holtz representation into a Goldstone-type two-body vertex. This expansion
is not unique, because the four lines connected to a Hugenholtz vertex can
be assigned in different ways to the two half-vertices of the ASG diagram,
but all possible expansions of a given Hugenholtz diagram give the same
resulting algebraic expression provided that the signs are interpreted ac-
cording to the rules for Goldstone diagrams. The weight factors are those
of the corresponding Hugenholtz diagram, with a factor 1

2 for each pair of
equivalent lines. For example,

= (a) (i) (j) (b) or (a) (b)(i) (j)

= 1
4

∑
abij

〈ij‖ab〉〈ab‖ij〉 = −1
4

∑
abij

〈ij‖ab〉〈ab‖ji〉

= 1
4

∑
abij

(
〈ij|ab〉 − 〈ij|ba〉

)(
〈ab|ij〉 − 〈ab|ji〉

)

= 1
2

∑
abij

〈ij|ab〉
(
〈ab|ij〉 − 〈ab|ji〉

)
.

(4.38)
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The procedure for generating and interpreting the antisymmetrized Gold-
stone diagrams can be summarized by the following rules:

1. Generate all distinct Hugenholtz skeletons.

2. For each skeleton assign arrows in all distinct ways to generate Hugen-
holtz diagrams.

3. Expand each Hugenholtz diagram into an ASG diagram in any of the
possible equivalent ways.

4. Interpret each two-body vertex in each ASG diagram in terms of an
antisymmetrized integral, with the usual 〈left–out right–out‖left–in
right–in〉 arrangement.

5. Interpret each one-body vertex in each ASG diagram as in ordinary
Goldstone diagrams.

6. Assign a phase factor (−1)h−l, as for ordinary Goldstone diagrams.

7. Assign a weight factor
(

1
2

)n, where n is the number of equivalent line
pairs; two lines are equivalent if they connect the same two vertices
in the same direction.

Applying these rules to the 〈0|Ŵ 3|0〉 example, we obtain the matrix ele-
ment as a sum of three diagrams:

= (i) (j)
(c)

(a)

(d)

(b)
= 1

8

∑
abcdij

〈ij‖ab〉〈ab‖cd〉〈cd‖ij〉

(h = 3, l = 2, n = 3)

= (a) (b)
(k)

(i)

(l)

(j)
= 1

8

∑
abijkl

〈ij‖ab〉〈kl‖ij〉〈ab‖kl〉

(h = 4, l = 2, n = 3) ,

= (a) (j)
(k)

(i)

(c)

(b)
= −

∑
abcijk

〈ij‖ab〉〈kb‖ic〉〈ac‖kj〉

(h = 3, l = 2, n = 0) .



4.4 Two-particle operators 123

Any other expansions of the Hugenholtz diagrams would give the same alge-
braic results. For example, the alternative expansion of the third diagram,

= (a) (j)
(i) (b)

(k) (c)
=

∑
abcijk

〈ji‖ab〉〈bk‖ic〉〈ac‖jk〉

(h = 3, l = 3, n = 0) ,

obviously reduces to an equal algebraic expression.
From now on, except where stated otherwise, all the Goldstone-type dia-

grams we use will be ASG diagrams.

4.4.5 Representation of operators not in normal-product form

When we deal with a two-body operator

V̂2 = 1
2

∑
pqrs

〈pq|v̂|rs〉p̂†q̂†ŝr̂ (4.39)

that is not in normal-product form (cf.(4.28)), we must include internal
contractions between the four creation or annihilation operators. Therefore
the diagrammatic representation of such an operator includes contractions
between the four lines attached to the same two-body vertex. Dealing first
with the ordinary Goldstone representation, we obtain the following new
diagrams, to be added to those of (4.29) (which we refer to as (V̂2)N):

V̂2 =(V̂2)N + + + +

+ + + +

+ + . (4.40)

In all but the last of these diagrams, the directions in which the lines leave
and enter a vertex indicate that they are hole lines, to be summed over
hole labels only, since only hole operators give nonzero contractions within
products of creation and annihilation operators of the form p̂†q̂†ŝr̂. The
last diagram, called an oyster, is drawn in this shape by convention, but
also involves hole lines only. The last five diagrams (the “wiggles” and the
oyster) are the exchange terms for the first five (the bubbles), and would
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be left out in the ASG representation. For the purpose of weight-factor
determination the oysters are considered symmetric, since it is immaterial
which of the two hole lines is drawn above or below the vertex line.

The first four diagrams in (4.40) and the corresponding exchange diagrams
in the second row represent the V̂ ′

N =
∑

pq

(∑
i(〈pi|qi〉−〈pi|iq〉)

)
{p̂†q̂} oper-

ator of (3.178). The fifth and the remaining diagrams represent 〈0|V̂2|0〉 =
1
2

∑
ij(〈ij|ij〉 − 〈ij|ji〉).

The non-normal-product Goldstone diagrams in the representation of
〈0|V̂ 2

2 |0〉 are:

(a) (i)
(k)

(j)
=

∑
aijk

〈ij|aj〉〈ak|ik〉
(

l = 3, h = 3,

asymmetric

)
,

(a)
(k)

(i)

(j)

= −
∑
aijk

〈ji|aj〉〈ak|ik〉
(

l = 2, h = 3,

asymmetric

)
,

(a)
(j)

(i)

(k)

= −
∑
aijk

〈ij|aj〉〈ak|ki〉
(

l = 2, h = 3,

asymmetric

)
,

(a) (i)

(k)

(j)

=
∑
aijk

〈ji|aj〉〈ak|ki〉
(

l = 1, h = 3,

asymmetric

)
,

(k) (l)

(i) (j)
= 1

4

∑
ijkl

〈ij|ij〉〈kl|kl〉
(

l = 4, h = 4,

symmetric

)
,

(k) (l)

(i)

(j) = −1
4

∑
ijkl

〈ij|ji〉〈kl|kl〉
(

l = 3, h = 4,

symmetric

)
,
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(i) (j)
(k)

(l)

= −1
4

∑
ijkl

〈ij|ij〉〈kl|lk〉
(

l = 3, h = 4,

symmetric

)
,

(i)

(j)
(k)

(l)

= 1
4

∑
ijkl

〈ij|ji〉〈kl|lk〉
(

l = 3, h = 4,

symmetric

)
.

The weight factor 1
4 for the last four diagrams arises from the factor 1

2 for
each of the two symmetric unlinked parts in each diagram. These unlinked
diagrams have a vacuum gap, i.e., a Fermi vacuum intermediate state. Such
diagrams are excluded from perturbation theory sums since the primed sums
in perturbation theory exclude the reference state. As will be shown in
Chapter 5, other unlinked diagrams also disappear from these sums because
of cancellation with renormalization terms.

In the Hugenholtz and ASG representations the above eight Goldstone
diagrams are replaced by just two diagrams, one for the four linked and one
for the four unlinked Goldstone diagrams:

= (a) (i)
(k)

(j)
=

∑
aijk

〈ij‖aj〉〈ak‖ik〉


 l = 3

h = 3
n = 0


 ,

=
(k) (l)

(i) (j)
= 1

4

∑
ijkl

〈ij‖ij〉〈kl‖kl〉


 l = 4

h = 4
n = 2


 .

Finally, we give the non-normal-product terms for 〈0|V̂ 3
2 |0〉, in the

Hugenholtz and ASG forms only:

= (i)
(c)

(a) (j) (b)

(k)

= 1
2

∑
abcijk

〈ij‖ab〉〈ab‖cj〉〈ck‖ik〉

(l = 3, h = 3, n = 1) ,
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= (a)
(k)

(i) (j) (b)

(l)

= −1
2

∑
abijkl

〈ij‖ab〉〈kb‖ij〉〈al‖kl〉

(l = 3, h = 4, n = 1) ,

= (a)
(i)

(j)
(c)

(b)

(k)
= 1

2

∑
abcijk

〈ij‖ab〉〈bk‖ck〉〈ac‖ij〉

(l = 3, h = 3, n = 1) ,

= (i)
(a)

(b)
(k)

(j)

(l)
= −1

2

∑
abijkl

〈ij‖ab〉〈kl‖jl〉〈ab‖ik〉

(l = 3, h = 4, n = 1) ,

= (i)
(b)

(a)

(k) (c)

(j)

= 1
2

∑
abcijk

〈ij‖aj〉〈ak‖bc〉〈bc‖ik〉

(l = 3, h = 3, n = 1) ,

= (a)
(k)

(i)

(l) (b)

(j)

= −1
2

∑
abijkl

〈ij‖aj〉〈kl‖ib〉〈ab‖kl〉

(l = 3, h = 4, n = 1) ,

= (a) (i)
(j) (b)

(k)
(l)

=
∑

abijkl

〈ij‖ab〉〈bk‖jk〉〈al‖il〉

(l = 4, h = 4, n = 0) ,

=
(a) (i)

(k) (b)

(j)

(l)

=
∑

abijkl

〈ij‖aj〉〈ak‖ib〉〈lb‖lk〉

(l = 4, h = 4, n = 0) ,
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= (a) (i)
(k) (b)

(l)
(j)

=
∑

abijkl

〈ij‖aj〉〈kl‖bl〉〈ab‖ik〉

(l = 4, h = 4, n = 0) ,

= (i)
(b)

(a)
(j)

(k)

(l)

=
∑

abijkl

〈ij‖aj〉〈ak‖bk〉〈bl‖il〉

(l = 4, h = 4, n = 0) ,

= (a)
(l)

(i)
(j)

(k)

(m)

= −
∑

aijklm

〈ij‖aj〉〈lk‖ik〉〈am‖lm〉

(l = 4, h = 5, n = 0) ,

=
(a) (i) (j) (b)

(k) (l)

= 1
8

∑
abijkl

〈ij‖ab〉〈ab‖ij〉〈kl‖kl〉

(l = 4, h = 4, n = 3) ,

= (a)
(i)

(j)

(b)

(k) (l)

= 1
8

∑
abijkl

〈ij‖ab〉〈kl‖kl〉〈ab‖ij〉

(l = 4, h = 4, n = 3) ,

=
(a) (k) (l) (b)

(i) (j)

= 1
8

∑
abijkl

〈ij‖ij〉〈kl‖ab〉〈ab‖kl〉

(l = 4, h = 4, n = 3) ,

=
(a) (i)

(j)

(k)

(l) (m)

= 1
2

∑
aijklm

〈ij‖aj〉〈ak‖ik〉〈lm‖lm〉

(l = 5, h = 5, n = 1) ,
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= (a) (i)

(j)

(m)
(k) (l)

= 1
2

∑
aijklm

〈ij‖aj〉〈kl‖kl〉〈am‖im〉

(l = 5, h = 5, n = 1) ,

=
(a) (k)

(l)

(m)

(i) (j)

= 1
2

∑
aijklm

〈ij‖ij〉〈kl‖al〉〈am‖km〉

(l = 5, h = 5, n = 1) ,

=

(i) (j)

(k) (l)

(m) (n)

= 1
8

∑
ijklmn

〈ij‖ij〉〈kl‖kl〉〈mn‖mn〉

(l = 6, h = 6, n = 3) ,

The last seven of these diagrams are unlinked. All 18 diagrams, taken to-
gether, represent the difference between 〈0|V̂ 3

2 |0〉 and the normal-product
matrix element 〈0|(V̂2) 3

N|0〉. The last diagram represents 〈0|V̂2|0〉3, while the
others represent contributions involving the V̂ ′

N operator of (3.178) and/or
powers of 〈0|V̂2|0〉. As will be seen in Chapter 5, all the unlinked diagrams
will not contribute to the perturbation treatment and will not need to be
considered.

4.4.6 The RSPT perturbation operator

As we saw in subsection 3.6.3, the normal-product perturbation operator
V̂N = V̂ − 〈0|V̂ |0〉 can be written in the form

V̂N = F̂ o
N + ŴN

=
∑
pq

fo
pq +

1
4

∑
pqrs

〈pq‖rs〉{p̂†q̂†ŝr̂} , (4.41)

where we have used the cancellation between ÛN and V̂ ′
N that arises from

the choice upq = −
∑

i〈pi‖qi〉. The one-electron part is represented diagram-
matically by the × vertex, while the two-electron part is represented
by the standard two-body vertex. In the canonical Hartree–Fock case F̂ o

N

vanishes, and we are left with ŴN = Ŵ as the sole perturbation. In non-
canonical Hartree–Fock the matrix elements fia, fai connecting hole states
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with particle states also vanish, so that the one-electron perturbation oper-
ator has the diagrammatic expansion

F̂ o
N = × + × (noncanonical HF). (4.42)

In the general (non-HF) case, the full expansion is required,

F̂ o
N = × + × + × + × (general case). (4.43)

Even in the non-HF case it is possible to simplify the expansion of F̂ o
N by

performing a semicanonical transformation of the orbitals (Handy, Pople,
Head-Gordon et al. 1989), which diagonalizes the hole–hole and particle–
particle blocks of F̂ separately (leaving the reference function invariant),
thus eliminating the first two diagrams in Eq. (4.43). This is the form of
the partitioned Hamiltonian used in generalized MBPT (Bartlett 1995), to
be discussed in Section 12.3.

More generally, the × vertex represents the f̂ ′ operator of (3.135),
which is equal to f̂o only if εp = fpp holds for all p.
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Diagrammatic expansions for perturbation theory

5.1 Resolvent operator and denominators

In order to represent diagrammatically the various terms in the perturba-
tion expansions for the energy and wave function, we need a diagrammatic
representation of the resolvent R̂0. We note that

R̂0 =
Q̂

E
(0)
0 − Ĥ0

=
∑

I

′ |ΦI〉〈ΦI |
E

(0)
0 − E

(0)
I

, (5.1)

the sum being over all states |I〉 ≡ |ΦI〉 different from |0〉. When R̂0 operates
on any state |J〉 other than |0〉 the result is

R̂0|J〉 =
∑

I

′ |I〉〈I|J〉
E

(0)
0 − E

(0)
I

=
∑

I

′
|I〉 δIJ

E
(0)
0 − E

(0)
I

= |J〉 1

E
(0)
0 − E

(0)
J

. (5.2)

Thus R̂0 does not change the state on which it operates, except for division
by the energy denominator, and any particle or hole lines present below the
point of action of R̂0 continue unchanged above it. This can be represented
symbolically as follows:

a

a

i

i

b

b

j

j

R̂0

· · ·

· · ·

|Φab...
ij... 〉

|Φab...
ij... 〉

=
|Φab...

ij... 〉
εab...
ij...

, (5.3)

where the energy denominator

εab...
ij... = E

(0)
0 − E

(0)

|Φab...
ij... 〉

= εi + εj + · · · − εa − εb − · · · , (5.4)

is equal to the sum of the orbital energies of the hole lines crossed by the
R0 line minus those of the particle lines crossed by the R̂0 line. The only
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exception to this result is R̂0|0〉 = 0, so that we have no terms in which the
resolvent line goes through a vacuum gap, as in

R̂0 .

The convention is to omit the resolvent lines, it being understood that an
energy denominator is to be read off the diagram between each successive
pair of vertices. In wave function diagrams, which are open at the top, an
additional resolvent line is implied above the highest vertex. We shall show
the resolvent lines explicitly in some cases for pedagogical reasons.

5.2 First-order energy

The zero- and first-order energies (see Section 3.5) are given by

E(0) =
∑

i

εi , (5.5)

E(1) = 〈0|V̂ |0〉 = −1
2

∑
ij

〈ij‖ij〉 = − (5.6)

(using the ASG representation) and, of course, Eref = E(0) + E(1). More
generally, if εp = fpp is not assumed, we have (see (3.186))

E(1) =
∑

i

f ′
ii − 1

2

∑
ij

〈ij‖ij〉 = × − (5.7)

using the × vertex to represent the f̂ ′ operator of (3.135).

5.3 Second-order energy

The correlation energy begins with second order, in the form (see (2.137))

E(2) = 〈0|V̂ R̂0V̂ |0〉 = 〈0|Ŵ R̂0Ŵ |0〉 , (5.8)

where we have used Ŵ = V̂ − 〈0|V̂ |0〉, as in Chapter 2, rather than the
Ŵ = ŴN of Chapter 4. In the canonical Hartree–Fock case the two usages of
Ŵ are equivalent; otherwise, the Ŵ in (5.8) includes a one-electron term, F̂ o

N.
The equivalence of the two forms in (5.8) follows from R̂0V̂ |0〉 = R̂0Ŵ |0〉,
because R̂0|0〉 = 0.

The diagrammatic representation of the second-order energy 〈0|Ŵ R̂0Ŵ |0〉
is very similar to that of 〈0|Ŵ 2|0〉, except for the addition of the resolvent
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line between the two Ŵ vertices. In the Hartree–Fock case we have just one
ASG diagram for this order,

(a) (i) (b)(j)
R̂0 =

1
4

∑
abij

〈ij‖ab〉〈ab‖ij〉
εab
ij

(5.9)

(the resolvent line has no effect on the determination of the sign and weight).
It is evident that the only allowed intermediate states in this case (those
crossed by the resolvent line) are double excitations |Φab

ij 〉.
In the non-HF case we must add the F̂ o

N contribution, represented by the
diagram

(a) (i)
×

×

R̂0 =
∑
ai

〈i|f̂ |a〉〈a|f̂ |i〉
εa
i

. (5.10)

This expression vanishes in the noncanonical HF case, since 〈i|f̂ |a〉 = 0 for
any HF solution, and thus (5.9) still holds. In the general non-HF case the
intermediate states include single excitations |Φa

i 〉.
The absence of single excitations from the second-order energy expression

in the HF case is a reflection of the Brillouin theorem (Section 1.5), which
states that for Hartree–Fock reference functions, canonical or otherwise,

〈0|Ĥ|Φa
i 〉 = 〈0|Ŵ |Φa

i 〉 = 0 (for any i, a) (5.11)

and there are no direct contributions of single excitations (i.e. none through
the second order terms). This analysis applies to unrestricted HF and to
closed-shell restricted HF but not to restricted open-shell HF, for which the
Brillouin theorem does not generally apply.

5.4 Third-order energy

According to (2.138), the third-order energy is given by

E(3) = 〈0|Ŵ R̂0Ŵ R̂0Ŵ |0〉 . (5.12)

This result is similar to that for 〈0|Ŵ 3|0〉, except that we need to include two
resolvent lines. In the canonical HF case we get three ASG diagrams, shown
with their interpretation in Fig. 5.1. As for the second-order energy diagrams
in the HF case, here too all intermediate states are double excitations.

In the non-HF case there are eleven additional ASG diagrams, shown in
Fig. 5.2 (with the resolvent lines omitted). Two of these diagrams, 6 and 7,
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(i)

(c) (d)

(j)

(a) (b)

R̂0

R̂0

1 =
1
8

∑
abcdij

〈ij‖ab〉〈ab‖cd〉〈cd‖ij〉
εab
ij εcd

ij

,

(a)

(k) (l)

(b)

(i) (j)

R̂0

R̂0

2 =
1
8

∑
abijkl

〈ij‖ab〉〈kl‖ij〉〈ab‖kl〉
εab
ij εab

kl

,

(a)

(k) (c)

(j)

(i) (b)

R̂0

R̂0

3 = −
∑

abcijk

〈ij‖ab〉〈kb‖ic〉〈ac‖kj〉
εab
ij εac

kj

.

Fig. 5.1. Canonical HF-case ASG diagrams for the third-order energy.

×

4

×

5

×

6

×

7
×

8
×

9

×
×

10

×

×
11

×
×

12
×
×
×

13
×
×
×

14

Fig. 5.2. Non-HF ASG diagrams for the third-order energy.

do not involve particle–hole one-electron integrals (such as 〈a|f̂ |i〉 or 〈i|f̂ |a〉)
and contribute also in the noncanonical HF case; they involve doubly excited
intermediate states only. The other diagrams contribute in the non-HF case
only and involve some singly excited intermediate states.



134 Diagrammatic expansions for perturbation theory

The advantages of the Hartree–Fock case in simplifying the formalism
seem obvious, but in fact have little computational significance beyond the
proliferation of terms. The above non-HF diagrams have between three and
five summation indices each, compared with six indices for the three HF-case
diagrams, and thus require significantly less computational effort.

5.5 Conjugate diagrams

An interesting diagram symmetry operation consists of turning a diagram
upside down (time reversal) followed by reversal of all arrow directions
(particle-hole inversion) (Paldus and Č́ıžek 1974). After these two oper-
ations each particle or hole line of the original diagram is again a particle or
hole line, respectively, in its new position in the new diagram. The diagram
resulting from this transformation (in any of its equivalent forms) is said to
be conjugate to the original diagram.

An example of a pair of conjugate diagrams is given by the non-HF third-
order energy diagrams 4 and 8 in Fig. 5.2. By carrying the original dummy
summation label with each line to its new position in the transformed dia-
gram, it is easy to see that the effect of the transformation on the algebraic
interpretation of the diagram is an interchange of the bra and ket indices
in each integral with no change in the values of the denominator or the
numerical coefficient:

(i)

(b) (c) (j)

(a)
×

R̂0

R̂0

=
1
2

∑
abcij

〈i|f̂ |a〉〈aj‖bc〉〈bc‖ij〉
εa
i ε

bc
ij

,

(i)

(b) (c) (j)

(a)
×

R̂0

R̂0

=
1
2

∑
abcij

〈ij‖bc〉〈bc‖aj〉〈a|f̂ |i〉
εbc
ijε

a
i

.

(5.13)

Consequently, the numerical values of the two diagrams are the complex
conjugates of each other.
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Each MBPT energy diagram is either self-conjugate (i.e. Hermitian), in
which case its value is necessarily real, or conjugate to another energy dia-
gram of the same order, in which case the sum of the two diagrams is equal
to twice the real part of the value of either. Thus it is enough to evaluate
just one of each pair of conjugate diagrams, taking twice the real part of its
value as the total value of the pair.

The three HF-case diagrams for the third-order energy, Fig. 5.1, are all
self-conjugate. Among the non-HF third-order diagrams, Fig. 5.2, the pairs
4 and 8, 5 and 9 and 10 and 12 are mutually conjugate, while the rest are
self-conjugate. We shall see many more examples of conjugate diagrams in
the fourth-order energy.

5.6 Wave-function diagrams

5.6.1 First-order wave function

Before proceeding to higher orders for the energy, we will digress to look at
the diagrammatic representation of the wave function.

The first-order wave function is given by (2.133),

|Ψ(1)〉 = R̂0Ŵ |0〉 , (5.14)

where, in the sense of Chapter 2, we have used Ŵ = V̂ − 〈0|V̂ |0〉. In
the Hartree–Fock case this is the same as the two-electron normal-product
operator ŴN and we have just one diagram, representing double-excitation
contributions:

|Ψ(1)〉 =
(a) (i) (j) (b)

R̂0 =
1
4

∑
abij

〈ab‖ij〉
εab
ij

|Φab
ij 〉 . (5.15)

For the purpose of counting loops we consider the open lines to be paired
at the top according to the pairing pattern in the corresponding slater de-
terminant, |Φab

ij 〉 in this case, thus forming two quasiloops. In regard to the
determination of the weight factor, two unlabeled open lines are considered
equivalent if they both begin at the same vertex or both end at the same ver-
tex. The diagram in (5.15) has two quasiloops, two hole lines and two pairs
of equivalent lines, hence the factor 1

4 (as usual the labels in parentheses are
included only as a convenience to identify dummy summation indices in the
corresponding algebraic expression, and all lines in this diagram are to be
taken as unlabeled). As stated in Section 5.1, according to the convention
one omits the resolvent line, with the understanding that in open diagrams
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there is one such line above the highest vertex as well as between each pair
of successive vertices.

In the non-HF case we need to include a one-electron vertex, leading to
the additional diagram

(a) (i)

×
R̂0 =

∑
ai

〈a|f̂ |i〉
εa
i

|Φa
i 〉 (5.16)

(since fai = fo
ai because a and i cannot be equal) which adds contributions

from singly excited states. Here we have one quasiloop, one hole line and
no equivalent lines, hence the factor +1. This diagram does not contribute
in the noncanonical Hartree–Fock case because the fai integrals vanish in
that case. Equation (5.16) still holds in the more general case in which f̂ ′,
(3.135), replaces f̂o because we have f ′

ai = fo
ai.

5.6.2 Second-order wave function

The second-order wave function is given by (2.134),

|Ψ(2)〉 = R̂0Ŵ R̂0Ŵ |0〉 . (5.17)

In the canonical HF case we have eight ASG diagrams, shown with their
algebraic interpretation in Fig. 5.3. The first three diagrams represent dou-
bly excited final states; they are followed by two singles, two triples and one
quadruple.

The quadruple-excitation diagram 8 is an example of a disconnected dia-
gram. As the name implies, such a diagram has two or more disconnected
parts. If any part of a disconnected diagram is closed, i.e. has no open lines,
as in

,

then the diagram is called unlinked. It will be shown later that unlinked
diagrams cancel with the renormalization terms while linked disconnected
diagrams remain in the wave function expansion. The second-order wave
function expression has no renormalization terms, and no unlinked diagrams
appear.

The non-HF contributions to |Ψ(2)〉 are represented by the eleven diagrams
in Fig. 5.4, which include five double excitations (9–12 and 19), four singles
(13, 14, 17, 18) and two triples (15, 16). Diagrams 9 and 10 contribute in
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(i)
(a)

(c)

(b)

(d)
(j)1 =

1
8

∑
abcdij

〈ab‖cd〉〈cd‖ij〉
εab
ij εcd

ij

|Φab
ij 〉 ,

(a)
(i)

(k)

(j)

(l)
(b)2 =

1
8

∑
abijkl

〈kl‖ij〉〈ab‖kl〉
εab
ij εab

kl

|Φab
ij 〉 ,

(i)
(a)

(c)

(j)

(k)
(b)3 = −

∑
abcijk

〈ak‖cj〉〈cb‖ik〉
εab
ij εbc

ik

|Φab
ij 〉 ,

(i)
(a)

(c) (b) (j)
4 =

1
2

∑
abcij

〈aj‖cb〉〈cb‖ij〉
εa
i εcb

ij

|Φa
i 〉 ,

(a)
(i)

(k) (j) (b)
5 = −1

2

∑
abijk

〈kj‖ib〉〈ab‖kj〉
εa
i εab

kj

|Φa
i 〉 ,

(a) (i) (j)
(d)

(b) (c) (k)
6 =

1
4

∑
abcdijk

〈bc‖dk〉〈ad‖ij〉
εabc
ijkεad

ij

|Φabc
ijk〉 ,

(i) (a) (b)
(l)

(j) (k) (c)
7 = −1

4

∑
abcijkl

〈lc‖jk〉〈ab‖il〉
εabc
ijkεab

il

|Φabc
ijk〉 ,

(a) (i) (j) (b)
(c) (k) (l) (d)

8 =
1
16

∑
abcdijkl

〈cd‖kl〉〈ab‖ij〉
εabcd
ijkl εab

ij

|Φabcd
ijkl 〉 .

Fig. 5.3. Canonical HF-case ASG diagrams for the second-order wave function.

the noncanonical HF case but diagrams 11–19 do not because they involve
integrals of the form 〈a|f̂ |i〉 or 〈i|f̂ |a〉, which vanish in this case. Diagrams
15, 16 and 19 are disconnected but not unlinked and are legitimate parts of
the wave-function expansion.

As will be shown in Section 9.4, all disconnected wave-function diagrams
can be re-expressed as products of connected wave-function diagrams each
consisting of one of their disconnected parts. This factorization is at the
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Fig. 5.4. non-HF ASG diagrams for the second-order wave function.

heart of the exponential Ansatz of coupled-cluster theory (Chapter 9). As
an example we consider diagrams 15 and 16 of Fig. 5.4. These diagrams
have equal numerators but, because of the different time sequences of the
vertices, their denominators are different. Combining their denominator
factors we get

1
εabc
ijkεab

ij

+
1

εabc
ijkεc

k

=
1

εabc
ijk

(
1

εab
ij

+
1
εc
k

)
=

1
εabc
ijk

εc
k + εab

ij

εab
ij εc

k

=
1

εab
ij εc

k

because εc
k + εab

ij = εabc
ijk . Thus the sum of these two second-order diagrams

can be factored into a product of two independent sums corresponding to
their two first-order disconnected parts:

× +
×

= ×
×

(5.18)

(note that the upper cross on the r.h.s. of (5.18) is a multiplication sign).
This is an example of a type of factorization that is very common in MBPT,
and other examples will be seen in the discussion below of the fourth-order
energy and in Chapters 6 and 7.

5.7 Fourth-order energy

5.7.1 Energy formula

Now we return to the energy expansion and look at E(4), (2.139), where new
features will appear for the first time. This is the first case in which we have
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a renormalization term. We have

E(4) = 〈0|Ŵ R̂0Ŵ R̂0Ŵ R̂0Ŵ |0〉 − E(2)〈Ψ(1)|Ψ(1)〉
= 〈0|Ŵ R̂0Ŵ R̂0Ŵ R̂0Ŵ |0〉 − 〈0|Ŵ R̂0Ŵ |0〉〈0|Ŵ R̂2

0Ŵ |0〉
= 〈0|Ŵ R̂0Ŵ R̂0Ŵ R̂0Ŵ |0〉 − 〈0|Ŵ R̂0〈0|Ŵ R̂0Ŵ |0〉R̂0Ŵ |0〉 , (5.19)

using |Ψ(1)〉 = R̂0Ŵ |0〉 and E(2) = 〈0|Ŵ R̂0Ŵ |0〉. In the last line of the
equation the E(2) expression has been inserted between the two R̂0 operators
in R̂ 2

0 (which derived from 〈Ψ(1)|Ψ(1)〉), showing the bracket insertion form
of the renormalization term.

In the derivation of the diagrammatic expression for the principal term of
E(4) we shall find some unlinked diagrams (diagrams that have disconnected
closed parts) and will show that these exactly cancel the renormalization
term. The linked-diagram theorem, to be proved in Chapter 6, generalizes
this result to all orders, for both the energy and the wave function, so
that the final expressions are sums of linked diagrams only. The bracket
insertion form of the renormalization terms will help in demonstrating this
cancellation.

5.7.2 Diagrams for E(4) in the canonical HF case

We shall now derive the diagrams that describe the principal term of the
fourth-order energy. The renormalization term will be discussed in subsec-
tion 5.7.4, where it will be shown that it cancels with the unlinked diagrams
of the principal term. The canonical HF case is discussed in the present
subsection, and the additional diagrams for other cases are derived in sub-
section 5.7.3. Because of the greater complexity when dealing with four
vertices, and in order to avoid missing some terms or including redundant
equivalent terms, we shall follow the procedure outlined in subsection 4.4.4
and begin by listing all Hugenholtz skeletons.

To facilitate systematic generation of the Hugenholtz skeletons for the
principal term of E(4), we classify them according to their connection pat-
terns, using the designation k-l-m to describe a skeleton (or diagram) in
which the top vertex is connected by k lines to the second vertex (counting
from the top), l lines to the third vertex and m lines to the bottom vertex.
Since we are dealing with the canonical HF case, each vertex must have four
connecting lines, so k + l + m = 4. The same requirement of four lines at
each vertex determines the remaining connections that do not involve the
top vertex. The resulting 15 skeletons are shown in Fig. 5.5. Three of these
skeletons (4-0-0, 0-4-0, 0-0-4) are unlinked. The first unlinked skeleton has
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4-0-0 3-1-0 3-0-1 2-2-0 2-1-1 2-0-2 1-3-0 1-2-1

1-1-2 1-0-3 0-4-0 0-3-1 0-2-2 0-1-3 0-0-4

Fig. 5.5. Hugenholtz skeletons for the principal term of E(4) for canonical HF.

a vacuum gap and thus cannot contribute. The other two unlinked skele-
tons generate diagrams that cancel with the renormalization term, as will
be shown in subsection 5.7.4.

Ignoring the vacuum-gap skeleton and inserting arrows in the other skele-
tons in all distinct ways, with two incoming and two outgoing lines at each
vertex, we obtain the 41 Hugenholtz diagrams in Fig. 5.6. The two un-
linked skeletons (33 and 41) generate just one diagram each, while the other
(linked) skeletons generate from two to six distinct diagrams each.

The corresponding antisymmetrized Goldstone diagrams, using the same
numbering as in Fig. 5.6, are shown in Figs. 5.7–5.10 classified by the type
of intermediate states involved. These intermediate states are defined by
the (omitted) resolvent lines that cross the diagrams between the vertices,
and are represented by the denominators in the corresponding algebraic ex-
pressions. Only the middle intermediate state, between the second and third
vertices, differs in its excitation level between the different classes of HF-case
diagrams. The classification based on the intermediate state has important
practical ramifications, because the diagrams for the different classes allow
different factorization patterns for the corresponding sums, leading to sub-
stantial differences in the computational effort required for their evaluation.
These factorizations and other computational considerations are discussed
in Chapter 7.
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Fig. 5.6. Hugenholtz diagrams for the principal term of E(4) for canonical HF.
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1 2 3 4

Fig. 5.7. Single-excitation ASG diagrams for the principal term of E(4).

5 6 7 8 9 10

11 12 13 14 15 16

Fig. 5.8. Double-excitation ASG diagrams for the principal term of E(4).

The first four diagrams, shown in Fig. 5.7, include a singly excited in-
termediate state (between the second and third vertices). There are 12
diagrams with doubly excited intermediate states only (Fig. 5.8), 16 that
include a triply excited intermediate state (Fig. 5.9) and nine that include
a quadruply excited intermediate state (Fig. 5.10). The latter include the
two unlinked diagrams, 33 and 41, which will be shown to cancel with the
renormalization term. There are eight conjugate pairs: diagrams 1 and 2, 5
and 6, 8 and 9, 10 and 11, 17 and 18, 21 and 22, 23 and 24, 29 and 30. All
other diagrams are self-conjugate.

The double-excitation diagrams 14 and 15 are particle and hole ladders,
respectively. Diagrams 7 and 16 are usually referred to as ring diagrams,
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17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

Fig. 5.9. Triple-excitation ASG diagrams for the principal term of E(4).

a designation that can be understood by considering their equivalent
forms,

and ,
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33 34 35 36 37

38 39 40 41

Fig. 5.10. Quadruple-excitation ASG diagrams for the principal term of E(4).

respectively. The other double-excitation diagrams involve more compli-
cated connection patterns.

5.7.3 Non-HF diagrams for E(4)

For the non-HF case we obtain the 69 additional linked Hugenholtz skeletons
shown in Fig. 5.11. Each of these skeletons generates between one and four
distinct diagrams, resulting in a total of 162 linked diagrams. Only six of
these skeletons, generating 22 diagrams (those that do not involve a particle–
hole one-electron integral of the form 〈i|f̂ |a〉 or 〈a|f̂ |i〉), contribute in the
noncanonical HF case. It is left as an exercise for the reader to generate the
non-HF diagrams from the skeletons.

(To generate ASG diagrams from Hugenholtz skeletons, the preferred se-
quence is to generate Hugenholtz diagrams first and then convert these to
ASG diagrams, since each Hugenholtz diagram produces a single distinct
ASG diagram. The alternative sequence through ASG skeletons is less
straightforward, since a Hugenholtz skeleton may produce more than one
distinct ASG skeleton.)

Some skeletons in Fig. 5.11 are equivalent to the upside-down image of
other skeletons and these generate sets of pairs of conjugate diagrams. Thus
the skeletons with a single one-electron vertex at the top (the first six in the
first row) are equivalent, in order, to the upside-down images of those with a
single one-electron vertex at the bottom (the first six in the third row), and
generate 18 pairs of conjugate diagrams. Similarly, the six skeletons with a
single one-electron vertex at the second level are symmetry related to the
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Fig. 5.11. Non-HF linked Hugenholtz skeletons for the principal term of E(4).

six diagrams with that vertex at the third level, generating another 18 pairs
of conjugate diagrams. Among the skeletons with two one-electron vertices
there are two sets of five skeletons that are symmetry related to two other
sets, generating 10 pairs of conjugate diagrams each, while the skeletons
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Fig. 5.12. Non-HF unlinked Hugenholtz diagrams for the principal term of E(4).

with three one-electron vertices consist of two sets of three skeletons that
are symmetry related to two other sets, generating six pairs of conjugate
diagrams each. There also are three pairs of conjugate diagrams generated
from skeletons that are equivalent to their own upside-down image (two pairs
with two one-electron vertices and one pair with four). In all, we obtain 71
pairs of conjugate diagrams and 20 self-conjugate diagrams.

There also are six unlinked non-HF skeletons (not counting three with a
vacuum gap), each generating a single diagram. These diagrams are shown
in Fig. 5.12. As will be shown later, they cancel with the non-HF part of
the renormalization term.

The large number of non-HF diagrams re-emphasizes the advantages of
the HF case in simplifying the formalism but, again, the computational
effort involved in evaluating all the non-HF terms is small compared with
the effort required for the HF terms.

5.7.4 Cancellation of the unlinked diagrams in E(4)

We now proceed to show that the unlinked diagrams in the fourth-order
energy cancel with the renormalization term. A formal proof of the can-
cellation of all unlinked diagrams in all MBPT energy and wave function
expressions with the corresponding renormalization terms will be given in
Chapter 6.

We begin with the canonical HF case. The two unlinked diagrams, 33 and
41 (Fig. 5.10), differ only in time ordering. Their algebraic expressions have
the same numerators and differ only in one factor in the denominator:

(a) (i)(j) (b)

(c) (k)(l) (d)

R̂0

R̂0

R̂0

=
1
16

∑
abcd
ijkl

〈ij‖ab〉〈kl‖cd〉〈ab‖ij〉〈cd‖kl〉
εab
ij εabcd

ijkl εcd
kl

,

(5.20)
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(a)

(i) (j)

(b)(c)
(k) (l)

(d)
R̂0

R̂0

R̂0

=
1
16

∑
abcd
ijkl

〈ij‖ab〉〈kl‖cd〉〈cd‖kl〉〈ab‖ij〉
εab
ij εabcd

ijkl εab
ij

.

(5.21)
Adding them together term by term we obtain

1
16

∑
abcd
ijkl

〈ij‖ab〉〈ab‖ij〉〈kl‖cd〉〈cd‖kl〉
εab
ij εabcd

ijkl

(
1

εcd
kl

+
1

εab
ij

)
.

Noting that

1
εcd
kl

+
1

εkl
ij

=
1

εab
ij εcd

kl

(εab
ij + εcd

kl ) =
εabcd
ijkl

εab
ij εcd

kl

,

the sum becomes

1
16

∑
abcd
ijkl

〈ij‖ab〉〈ab‖ij〉〈kl‖cd〉〈cd‖kl〉(
εab
ij

)2
εcd
kl

=


1

4

∑
abij

〈ij‖ab〉〈ab‖ij〉(
εab
ij

)2




(
1
4

∑
cdkl

〈kl‖cd〉〈cd‖kl〉
εcd
kl

)
.

The second factor on the right-hand-side of this expression is just the second-
order energy in the HF case,

E(2) =
(c)

(k) (l)
(d)

R̂0 =
1
4

∑
cdkl

〈kl‖cd〉〈cd‖kl〉
εcd
kl

. (5.22)

The first factor can be described diagrammatically in the form

(a) (i) (j) (b)
R̂0

R̂0

,
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which is equal to 〈Ψ(1)|Ψ(1)〉 in the HF case (the two resolvent lines represent
the squared denominator). More explicitly, noting that∑

cdkl

〈Φab
ij |Φcd

kl 〉
〈cd‖kl〉

εcd
kl

=
〈ij‖ab〉

εab
ij

− 〈ba‖ij〉
εba
ij

− 〈ab‖ji〉
εab
ji

+
〈ba‖ji〉

εba
ji

=
〈ij‖ab〉

εab
ij

+
〈ij‖ab〉

εab
ij

+
〈ij‖ab〉

εab
ij

+
〈ij‖ab〉

εab
ij

= 4
〈ab‖ij〉

εab
ij

(5.23)

(because 〈Φab
ij |Φcd

kl 〉 = δikδjlδacδbd − δikδjlδadδbc − δilδjkδacδbd + δilδjkδadδbc),
we can rewrite the first factor in the form

1
4

∑
abij

〈ij‖ab〉
εab
ij

〈Φab
ij |


 (

1
4

∑
cdkl

|Φcd
kl 〉

〈cd‖kl〉
εcd
kl

)
= 〈Ψ(1)|Ψ(1)〉 . (5.24)

The sum of the two unlinked diagrams has thus been shown to be equal to
E(2)〈Ψ(1)|Ψ(1)〉, exactly canceling the renormalization term.

This result can be represented diagrammatically in the form

+ =
R̂0

R̂0

R̂0 ,

(5.25)
where “insertion” of the E(2) diagram simply means multiplication by E(2).
Note that no denominator line spans both parts of this diagram.

In the non-HF case there are six additional unlinked diagrams, shown in
their Hugenholtz form in Fig. 5.12. At the same time, there are additional
diagrams in the expressions for E(2) and 〈Ψ(1)|Ψ(1)〉 in the renormalization
term. The complete diagrammatic description of E(2) is

E(2) = +
×

×
, (5.26)

while the first-order wave function is

|Ψ(1)〉 = +
×

, (5.27)

and its norm can be described by

〈Ψ(1)|Ψ(1)〉 =
R̂0

R̂0
+

×

×

R̂0

R̂0
(5.28)
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(the repeated resolvent lines, one due to 〈Ψ(1)| and the other to |Ψ(1)〉, must
be shown explicitly in this equation to indicate the squared denominator).
The complete renormalization term can therefore be described by

E(2)〈Ψ(1)|Ψ(1)〉 = +
×

×

+

×

×

+

×
×

×
×

,

(5.29)

it being understood that there is a resolvent line both above and below each
insertion.

The first term in (5.29) is the HF part, which is cancelled by the two
HF-case unlinked diagrams, as shown earlier. The remaining three terms
are canceled by the six non-HF unlinked diagrams of Fig. 5.12, as follows:

(a) (i)(j) (b)
(c) (k)

×

×

+ (a) (i) (j) (b) (c) (k)
×

×

=
1
4

∑
abc
ijk

〈ij‖ab〉〈k|f̂ |c〉〈ab‖ij〉〈c|f̂ |k〉
εab
ij εabc

ijk

(
1
εc
k

+
1

εab
ij

)

=
1
4

∑
abc
ijk

〈ij‖ab〉〈ab‖ij〉〈k|f̂ |c〉〈c|f̂ |k〉
(εab

ij )2εc
k

=
(a)

(i) (j)

(b)
(c) (k)

×

×
, (5.30)
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and, similarly,

×

×
+

×

×

=

×

×

, (5.31)

×
×

×
×

+

×
×

×
×

=

×
×

×
×

. (5.32)

Thus we have obtained full cancellation of the unlinked diagrams with the
renormalization term.

5.7.5 Role of the EPV terms

We shall now examine the cancellation of unlinked diagrams in more detail,
focusing on the role of exclusion principle violating (EPV) terms.

Consider two EPV quadruple-excitation terms, one linked and one un-
linked, contributing to diagrams 39 and 41, respectively, of Fig. 5.10:

a i j k l d

b

b

= − 〈ij‖ab〉〈kl‖bd〉〈bd‖kl〉〈ab‖ij〉
εab
ij εabbd

ijkl ε
ab
ij

, (5.33)

a i j b b k l d = +
〈ij‖ab〉〈kl‖bd〉〈bd‖kl〉〈ab‖ij〉

εab
ij εabbd

ijkl ε
ab
ij

. (5.34)

We have not included the weight factors, since all lines are labeled. In
unrestricted summations there would be a coefficient 1

4 for the linked term
and a coefficient 1

16 for the unlinked term; however, there are four equivalent
ways to assign the pair of equal particle labels in the latter diagram, so that
the weight factors balance at the end. These two terms obviously cancel and
this is as it should be, since both are EPV terms.
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This same cancellation does not occur for the non-EPV terms (b �= c):

a i j k l d

b

c

= − 〈ij‖ab〉〈kl‖cd〉〈bd‖kl〉〈ac‖ij〉
εab
ij εabcd

ijkl εac
ij

, (5.35)

a i j b c k l d = +
〈ij‖ab〉〈kl‖cd〉〈cd‖kl〉〈ab‖ij〉

εab
ij εabcd

ijkl εab
ij

. (5.36)

Note that having equal labels on equivalent lines produces vanishing contri-
butions,

a i i k l d

b

c

= − 〈ii‖ab〉〈kl‖cd〉〈bd‖kl〉〈ac‖ii〉
εab
ii εabcd

iikl εac
ii

= 0 ,

a i i b c k l d = +
〈ii‖ab〉〈kl‖cd〉〈cd‖kl〉〈ab‖ii〉

εab
ii εabcd

iikl εab
ii

= 0 ,

and thus such diagrams can be ignored in considering the cancellations.
Thus the unlinked EPV terms that are canceled by the renormalization

term are not legitimate contributions in the first place and have only been
included because of the presence of cancelling linked EPV terms. After
cancellation of all the unlinked contributions, including the EPV terms,
by the renormalization term, the “illegitimate” linked EPV terms in the
principal term remain. We can divide up the renormalization term into two
parts:

−E(2)S11 = (−E(2)S11)CJ + (−E(2)S11)DJ , (5.37)

where S11 = 〈Ψ(1)|Ψ(1)〉 and the subscript DJ (disjoint) indicates the sum
of those contributions in which the diagrams for E(2) and S11 have no labels
in common, while CJ (conjoint) indicates the sum of the contributions in
which the two diagrams have one or more labels in common.
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The disjoint part of the renormalization term cancels the non-EPV
unlinked-diagram contributions,

(−E(2)S11)DJ = − − (non-EPV
terms only),

(5.38)

while the conjoint part cancels the EPV unlinked-diagram contributions,
leaving behind the linked EPV terms. Since either (−E(2)S11)CJ or the sum
of the linked EPV terms cancels the sum of the unlinked EPV contributions,
they must be equal to each other,

(−E(2)S11)CJ =
b

b
+

j

j
+

b

b

+
j

j
+

b
b +

j
j

+ · · · (all the linked EPV terms), (5.39)

so that these linked EPV terms can be regarded as the remnant of the renor-
malization term that was not canceled by “legitimate” (non-EPV) unlinked
terms.

The total quadruple-excitation contribution can therefore be expressed in
either of two ways:

E
(4)
Q = (non-EPV linked quadruple-excitation diagrams)

+ (EPV linked quadruple-excitation diagrams)

= (non-EPV linked quadruple-excitation diagrams)

+ (−E2S11)CJ . (5.40)

5.8 Linked-diagram theorem

The cancellation of all the unlinked diagrams against the renormalization
terms in Rayleigh–Schrödinger perturbation theory is formalized by the
linked-diagram theorem (Goldstone 1957), which states that the energy and
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the wave function can be expressed, in each order, as a sum of linked dia-
grams only. Explicitly,

E(n) = 〈0|Ŵ (R̂0Ŵ )n−1|0〉L , (5.41)

|Ψ(n)〉 =
[
(R̂0Ŵ )n|0〉

]
L

, (5.42)

where the subscript L indicates the limitation to linked diagrams (which,
in the case of the energy, is equivalent to a limitation to connected dia-
grams). Proof of this theorem is deferred to Chapter 6. The cancellation of
the unlinked diagrams is closely related to the extensivity of the Rayleigh–
Schrödinger perturbation theory, as will be discussed in Section 5.10.

As an example of the cancellation of unlinked diagrams in the wave func-
tion expansion, we shall consider the third-order wave function, the lowest
wave-function order in which unlinked diagrams and a renormalization term
occur (see (2.135)):

|Ψ(3)〉 = R̂0Ŵ R̂0Ŵ R̂0Ŵ |0〉 − R̂0〈0|Ŵ R̂0Ŵ 〉R̂0Ŵ |0〉 . (5.43)

In the canonical HF case we find two unlinked diagrams, whose sum can be
expressed as an insertion,

+ = ,

(5.44)

which is equal to the renormalization term. Again, it is understood that a
resolvent line occurs both above and below the insertion. The non-HF case
is left as an exercise for the reader.

5.9 Numerical example

In order to get a feel for the relative magnitudes of the various contributions
to the energy, we shall look at an example from a set of calculations for the
H2O molecule at its equilibrium geometry in a (5s4p2d/3s1p) Slater-type
basis (39-STO) (Bartlett, Shavitt and Purvis 1979, Wilson 1979, Bartlett
1981, Bartlett, Cole, Purvis et al. 1987). The correlation energy contribu-
tions for this example, through fourth order, are given in Table 5.1.

We see in the table that the fourth-order renormalization term cancels
61% of the principal term in this example. This cancellation is even more
striking if we look just at the quadruple-excitation contribution. The sum
of all quadruple-excitation diagrams in the principal term is −13.910 mEh;
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Table 5.1. Contributions to the correlation energy in the water molecule in
millihartrees (mEh), using a 39-STO calculation (Bartlett, Shavitt and

Purvis 1979, Wilson 1979, Bartlett 1981, Bartlett, Cole, Purvis et al. 1987)

E(2) −281.780
E(3) −3.241
E(4) singles −2.033

doubles −4.324
triples −7.863
linked quadruples +3.206 −11.014

E(2) + E(3) + E(4) −296.035

Another breakdown of E(4):

principal term −28.130
renormalization term +17.116

E(4) −11.014

deducting the value of the unlinked diagrams, −17.116 mEh, leaves a linked-
diagram contribution of +3.206 mEh. Thus removal of the unlinked
quadruple-excitation diagrams in E(4) leads to a change in sign of the
quadruple-excitation contribution.

It will be shown in Chapter 7 that the determination of the quadruple-
excitation contribution to the fourth-order energy requires substantially less
computational effort than the determination of the triple-excitation contri-
bution. While the computational effort for the fourth-order quadruples is
approximately proportional to the sixth power of the number of orbitals,
the effort for the triples is approximately proportional to the seventh power.
In fact, early fourth-order MBPT calculations (see e.g. Bartlett, Shavitt,
Purvis et al. 1979) left out the triples, producing a result sometimes referred
to as MBPT(4)SDQ or SDQ-MBPT(4). The results in Table 5.1 show not
only that the triples’ contribution may be greater in magnitude than that of
the linked quadruples but also that the two contributions may be of oppo-
site sign. In fact, including the quadruples without the triples may actually
produce less accurate results than leaving both out.

We can use the H2O 39-STO example to obtain a quantitative estimate of
the role of the EPV terms in the cancellation of the unlinked diagrams, as
discussed in subsection 5.7.5. Using an approximate evaluation of the con-
joint part of the renormalization term based on a CEPA-3 estimate (Bartlett,
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Fig. 5.13. Role of EPV terms in the cancellation of unlinked quadruple-excitation
diagrams in E(4) for the 39-STO H2O calculation (energies in millihartrees).
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Shavitt and Purvis 1979), we find

(−E(2)S11)CJ = 7.101 mEh ,

(−E(2)S11)DJ = 10.015 mEh ,

so that the linked quadruple-excitation contribution can be divided up as
follows:

E
(4)
Q = −3.895 mEh (linked non-EPV quadruple excitations)

+ 7.101 mEh (linked EPV quadruples = (−E(2)S11)CJ)

= 3.206 mEh .

The two interpretations of the role of the EPV terms in the cancellation
of the renormalization term and unlinked quadruple-excitation diagrams
in fourth-order MBPT, as discussed in subsection 5.7.5, are given for the
39-STO H2O calculation in Fig. 5.13. In part (a) of the figure all the unlinked
quadruple-excitation diagrams (the EPV and non-EPV terms) are canceled
by the complete renormalization term, leaving the linked diagrams (both
EPV and non-EPV terms) as the final quadruple-excitation energy. In part
(b) we leave out the EPV terms; here the unlinked non-EPV terms are
canceled by the disjoint part of the renormalization term, leaving the linked
non-EPV terms plus the conjoint part of the renormalization term as the
final quadruple-excitation energy. This conjoint part can be re-expressed
in the form of linked EPV terms, justifying the interpretation of the linked
EPV terms as the uncanceled remnant of the renormalization term.

5.10 Unlinked diagrams and extensivity

5.10.1 Extensivity implications

For an extensive system, with size (extent) proportional to some count pa-
rameter N (the number of identical subunits), the total energy is, of course,
proportional to N . If the Rayleigh–Schrödinger perturbation theory expan-
sion, with Ĥ = Ĥ0 + λV̂ , converges for a range of values of λ then it must
also provide a total converged energy that is proportional to N for each
value of λ in that range. Thus, if the energy is expanded in powers of λ,

E = E(0) + λE(1) + λ2E(2) + · · · , (5.45)

then each order E(n) must be proportional to N so that the RSPT energy
is extensive, order by order. (This does not hold for BWPT, in which E is
not expanded in powers of λ, as demonstrated in subsection 2.4.3.)
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Now consider the renormalization term in E(4), i.e. −E(2)S11. The factor
E(2) is obviously proportional to N . To find the behavior of S11 we go back
to the example of N noninteracting He atoms considered in subsections 2.4.3
and 2.4.8. For this example the RSPT first-order wave function is given by

|Ψ(1)〉 =
∑

i

|Φi〉
〈Φi|V̂ |Φ0〉
E

(0)
0 − E

(0)
i

=
∑

i

|Φi〉
β∗

ε0 − α
, (5.46)

and thus

S11 = 〈Ψ(1)|Ψ(1)〉 =
∑
i,j

β

ε0 − α
〈Φi|Φj〉

β∗

ε0 − α
= N

|β|2
(ε0 − α)2

(5.47)

or

S11 ∝ N . (5.48)

As a result of this analysis we find that

−E(2)S11 ∝ N2 , (5.49)

which implies that the unlinked diagrams in E(4), with which the renor-
malization term cancels, are also proportional to N2. It is only by this
cancellation that extensivity can be restored. In fact, as discussed below
in subsection 5.10.2, it can be shown more generally that linked energy
diagrams are always extensive (provided that the complete diagram is eval-
uated), and so any model for the energy that consists of a sum of linked
diagrams is properly extensive.

5.10.2 The N-dependence of diagrams

We can use the example of N noninteracting He atoms to examine the
dependence of all MBPT diagrams on the size of the system, i.e. on the
number of atoms N .

The key point is that, because the atoms do not interact, the integrals
〈pq‖rs〉 and 〈p|f̂ |q〉 for this example vanish unless p, q, r, s (or p, q) all belong
to the same atom. Thus nonzero contributions to the sum represented by
any diagram are obtained only from terms in which the labels of the four
or two lines connected to each vertex all belong to the same atom. In any
connected piece of a diagram all vertices form a connected network, so non-
zero contributions are obtained only from terms in which all labels in this
connected piece belong to the same atom.
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The factorization theorem, to be stated in detail and proved in Chapter 6,
shows that different time-orderings of an unlinked and/or disconnected di-
agram can be collected into sets (defined by the relative positions of the
top vertices of their separate connected pieces) whose sums are equal to
connected diagrams with insertions, i.e. to products of the individual con-
nected pieces (with an extra denominator for each insertion line). We have
seen examples of this factorization in the demonstration of the cancellation
of unlinked diagrams in the fourth-order energy (subsection 5.7.4) and in
the third-order wave function (Section 5.8). The factorization decouples the
connected pieces of the disconnected diagrams by eliminating denominators
involving more than one connected piece. As a result, the sums over all
disconnected diagrams can be rewritten in terms of sums of products of
connected diagrams and insertions.

The sum of the terms of a connected diagram or insertion over the labels
belonging to any He atom in our example is independent of the presence
of the other atoms and therefore of N . For a closed linked diagram (or
insertion) the sum over the labels of all atoms is thus proportional to N .
For an open linked diagram, with fixed labels on the open lines (representing
the coefficient of a given Slater determinant), a nonzero contribution requires
all fixed and internal labels of each connected piece to belong to the same
atom, so the sum over all internal labels is independent of N .

The factorization theorem therefore leads to the conclusion that the value
of any MBPT diagram, for both the wave function and the energy, is pro-
portional to Nk, where k is the number of closed connected pieces in the
diagram. As examples we show two seventh-order unlinked diagrams, one
open and one closed:

, .

The first (open) diagram has two closed parts and its value (for the coef-
ficient of any specific term in the wave function expansion) is proportional
to N2 while the second (closed) diagram has three closed parts and a value
proportional to N3.

The linked-diagram theorem states that each order of the energy is given
by a sum of closed linked (and therefore connected) diagrams only, i.e. di-
agrams each consisting of one closed part, while each order of the wave
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function is given by a sum of open diagrams with no closed parts. It therefore
implies that each order of the energy is proportional to N , again confirm-
ing the extensivity of RSPT. At the same time, the coefficient of each term
|Φab...

ij... 〉 in the expansion of the wave function, in each order, is independent
of N (though the number of such terms is strongly dependent on N).

While the discussion of the N -dependence of diagrams has been presented
here in terms of the example of N noninteracting He atoms, the result is
much more general: the order-by-order extensivity property of Rayleigh–
Schrödinger perturbation theory requires that the energy and wave function
be expressed, in each order, as a sum of linked diagrams only.

5.10.3 Relationship to configuration interaction (CI)

Within any given basis set, the full-CI energy and the infinite-order con-
verged PT energy

∑
n E(n) (if the PT series converges) are identical and

provide the “exact” solution for the Schrödinger equation within the space
generated by the given basis set. Thus the full-CI result provides a bench-
mark against which other methods using the same basis set can be measured.
Truncated PT sums,

En =
n∑

m=2

E(m) , (5.50)

present successive approximations to the full-CI correlation energy Efull-CI.
The full-CI energy can also be approached by a sequence of CI calcu-

lations with increasing excitation-level configurations: ESCF, ECID (with
all double-excitation configurations), ECISD (singles and doubles), ECISDT

(triples added), ECISDTQ (quadruples added), etc. (Note that if only sin-
gles are used then ECIS = ESCF for SCF orbitals because of the Brillouin
theorem.) In a certain sense, E2 and E3 can be seen as approximations to
CID, or CISD in the non-HF case, since they involve only a sum over doubly
excited configurations (singly excited configurations must be added for the
non-HF case). In fact, for the H2O 39-STO calculation we find (Bartlett
and Shavitt 1977b),

E2 = E(2)=−281.780 mEh,
E3 = E(2) + E(3)=−285.021 mEh,

ECID=−274.021 mEh,
ECISD=−275.576 mEh.

We see that both E2 and E3 are lower than the CI energies. This behavior
is not atypical for a nonvariational method like PT.
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A better approximation for ECID (or ECISD) can be obtained, in principle,
from fourth-order MBPT, but the latter contains contributions from single,
triple and quadruple excitations as well. If we take the fourth-order RSPT
formula

E(4) = 〈0|Ŵ R̂0Ŵ R̂0Ŵ R̂0Ŵ |0〉 − E(2)S11

and limit the implied sums over intermediate states in R̂0,

R̂0 =
∑

I

′ |ΦI〉〈ΦI |
E

(0)
0 − E

(0)
I

,

so that they only span doubly excited states |ΦI〉, then we should get an
approximation to CID only. In fact, this result can be worked out as follows
(Bartlett and Shavitt 1977b, Bartlett, Shavitt and Purvis 1979):

double excitation diagrams in E(4) −4.324 mEh

+ renormalization term (−E(2)S11) 17.116 mEh

total double-excitation part of E(4) 12.792 mEh

E(2) + E(3) −285.021 mEh

fourth-order RSPT approximation to CID −272.229 mEh

single excitation diagrams in E(4) −2.033 mEh

fourth-order RSPT approximation to CISD −274.262 mEh

This result compares well with the values ECID = −274.021 mEh, ECISD =
−275.576 mEh given above. Note that the renormalization term is made up
entirely of double-excitation contributions (in E(2) and in S11, separately)
and thus constitutes part of the RSPT approximation to CID.

This analysis is not meant to imply that CID or CISD is a more desirable
approximation than any particular order of RSPT. In fact, while CI is inher-
ently an infinite-order method, truncation at any excitation level sacrifices
the important property of extensivity. The loss of extensivity is due to the
presence of non-extensive terms at each truncation level of the CI energy.
These terms are canceled in full CI but, because the cancellation involves
contributions from different excitation levels, truncated CI at any level of
truncation short of full CI necessarily retains non-extensive contributions.
These non-extensive contributions reflect the implicit presence in the CI
energy of the disjoint parts of renormalization terms, which are eventually
canceled by higher-excitation non-EPV unlinked-diagram contributions (the
EPV terms and the conjoint parts of the renormalization terms are absent
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in CI calculations). These missing unlinked diagrams in the CI energy are a
manifestation of the missing disconnected clusters in the CI wave function.

For example, the non-extensive contributions in the CISD energy reflect
the implicit presence of the disjoint part of the fourth-order renormalization
term (−E(2)S11)DJ; this arises from double, and possibly single, excitations.
This contribution would be canceled in higher-level CI by non-EPV un-
linked quadruple-excitation contributions, but it is retained in CISD and is
primarily a manifestation of the lack of the disconnected 1

2 T̂ 2
2 clusters from

the CISD wave function (see Section 1.8). Since the renormalization terms
are expressible in terms of unlinked diagrams, the non-extensivity is com-
monly ascribed to uncanceled unlinked-diagram contributions retained in
truncated CI. The non-extensivity effects in truncated CI increase rapidly
with the size of the system, because of the higher N -dependence of the
non-extensive terms.

A simple strategy to improve the CID (or CISD) energy is to add an
estimate of the quadruple-excitation contribution. As a first try we can
simply remove the −E(2)S11 renormalization-term contribution since this
cancels the largest quadruples contribution in E(4), the unlinked quadruple-
excitation diagrams (see Fig. 5.13). Thus adding +E(2)S11 is equivalent to
adding the unlinked diagrams

+ .

In the above example this approach would give

ECISD −275.576 mEh

E(2)S11 −17.116 mEh

estimate of ECISDQ −292.692 mEh

This is a very reasonable value, though it is likely to overestimate the
quadruple-excitation contribution somewhat (the true CISDQ correlation
energy is probably about −289 mEh). This approach is, in fact, the basis
for the Davidson correction (Davidson 1974, Langhoff and Davidson 1974)

∆EQ ≈ (1 − C2
0 )∆ED, (5.51)

where ∆ED and ∆EQ are the double- and quadruple-excitation contribu-
tions, respectively, in CI and C0 is the coefficient of the SCF configuration in
the normalized CID expansion. This correction is based on the assumption
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(see Meunier, Levy and Berthier 1976, Bartlett and Shavitt 1977a) that

∆ED ≈ E(2) (5.52)

and

S11 = 〈Ψ(1)|Ψ(1)〉 ≈ 〈χD|χD〉 =
1 − C2

0

C2
0

≈ 1 − C2
0 . (5.53)

The denominator in the next-to-last form of (5.53) (Siegbahn 1978) signals
the conversion from the full normalization of the CI wave function to the
intermediate normalization appropriate for perturbation theory, ΨCID =
ΦSCF + χD, in which the coefficient of ΦSCF is equal to 1; however, this
denominator is usually ignored, giving the last form in the equation. Fur-
thermore, ∆ESD and C0 from CISD are generally used instead of the CID
values, providing an approximation for CISDQ.

The Davidson correction is one of a class of so-called quadruples correc-
tions (see also Davidson and Silver 1977, Pople, Seeger and Krishnan 1977,
Burton, Buenker, Bruna et al. 1983, Meissner 1988, Martin, François and
Gijbels 1990) that constituted an attempt to account for the quadruple-
excitation CI contributions on the basis of CISD data. Since the principal
extensivity error in CISD is due to the implicit presence of the disjoint part
of the fourth-order renormalization term and since those contributions can
only be canceled by unlinked quadruple-excitation terms, these corrections
go a long way toward restoring extensivity to CISD and are therefore also
known as extensivity corrections.

Applying the Davidson-correction formula to the H2O 39-STO CISD cal-
culation gives

(1 − C2
0 )∆ED = (1 − 0.9724222)(−275.576) = −14.990 mEh , (5.54)

which may be compared with

E(2)S11 = −17.116 mEh . (5.55)

If we had used (1−C2
0 )/C2

0 instead of 1−C2
0 then we would have obtained a

correction equal to −15.852 mEh. Actually, E(2)S11 overestimates the cor-
rection, since only (−E(2)S11)DJ is truly canceled by the non-EPV unlinked
quadruple-excitation diagrams. A better correction would be

(E(2)S11)DJ = −10.015 mEh , (5.56)

but we cannot easily obtain this value, or an estimate for it, from the CISD
calculation. The various CEPA (coupled electron pairs approximation) mod-
els (CEPA-n, n = 0–5) (Kelly 1964a, Č́ıžek 1966, Meyer 1974, Ahlrichs,
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Table 5.2. Correlation energy of H2O in the 39-STO basis (energies are in
millihartrees) (Rosenberg and Shavitt 1975, Rosenberg, Ermler and Shavitt

1976, Bartlett, Shavitt and Purvis 1979, Bartlett 1981, Bartlett, Cole,
Purvis et al. 1987)

From Da From SDb

calculation calculation

CI correlation energy −0.274021 −0.275576
Contribution of single excitations −0.001555
C0 (coefficient of ΦSCF in normalized CI) 0.973176 0.972422
Davidson correction −0.014504 −0.014990
CI correlation energy + correction −0.288525 −0.290566

MBPT(2) −0.281780
MBPT(3) −0.285021
MBPT double excitations to infinite order −0.28826
MBPT(4)SDQ −0.288172
MBPT(4) −0.296035

CCD −0.286210
CCSD −0.287858
CCSDT-1 −0.295408

a Doubles
b Singles and doubles.

Lischka, Staemmler et al. 1975, Kutzelnigg 1977, Koch and Kutzelnigg
1981) are various ways to estimate (E(2)S11)DJ on the basis of pair ener-
gies (we shall not describe these methods here). Thus, if we could have used
(E(2)S11)DJ we would have obtained

ECISD =−275.576 mEh

(E(2)S11)DJ = −10.015 mEh

−285.591 mEh

This analysis does not include the full quadruple-excitations contribution,
since the remaining (uncancelled) true quadruples terms have been ignored.
Including these terms would have added about −3.9 mEh; using E(2)S11

instead of (E(2)S11)DJ compensates to some extent for this omission, giv-
ing about −289.5 mEh compared with −288.172 mEh for the fourth-order
MBPT SDQ energy.
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Various correlation-energy results for the H2O 39-STO CISD calculation
(Rosenberg and Shavitt 1975, Rosenberg, Ermler and Shavitt 1976, Bartlett,
Shavitt and Purvis 1979, Bartlett 1981, Bartlett, Cole, Purvis et al. 1987) are
summarized in Table 5.2; the CI, MBPT and coupled-cluster (CC) results
are included. The coupled-cluster methods will be discussed in Chapters 9
and 10.
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Proof of the linked-diagram theorem

6.1 The factorization theorem

As a first step in the formal proof of the linked-diagram theorem, we will
derive a generalization of the factorization described in subsection 5.7.4,
embodied in (5.25). This generalization, referred to as the factorization the-
orem (Hugenholtz 1957, Frantz and Mills 1960, Brandow 1967, 1977), states
that a product of two connected open diagrams is equal to a sum of discon-
nected diagrams, each made up of the two diagrams of the original product
with all possible time orderings of the vertices of one of the disconnected
parts relative to those of the other.

We first give an example, using skeletons rather than full diagrams to
reduce clutter since the validity of the factorization is independent of the
arrow directions:

×

× =

×

+

×

+
×

+

×

+
×

+ × .

The theorem can be extended straightforwardly to products of more than
two open diagrams. It cannot be applied to a simple product of an open
and a closed diagram or of two closed diagrams, because the total number
of denominator factors would not be the same in the product and in the
unlinked diagrams resulting from the expansion. However, it can be applied
to a diagram with an insertion, which represents a product of two diagrams,
at least one of which is closed, with a modification in the principal part due

165
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= ×

R̂0

R̂0

R̂0

R̂0

R̂0

R̂0

R̂0

= + +

+ + + .

Fig. 6.1. A factorization-theorem example of the expansion of a diagram with an
insertion as a sum of unlinked diagrams (resolvent lines are shown in the product
form to show that a resolvent remains on each side of the original insertion).

to the presence of an extra resolvent line just above the insertion. In this
case the sum over all time orderings is restricted to those orderings in which
the top vertex of the inserted diagram remains at the level of the insertion.
This form of the theorem is used to prove that the renormalization terms
of RSPT cancel against the unlinked diagrams. An example is shown in
Fig. 6.1.

Any structure that exists above the insertion remains unchanged in all di-
agrams in the sum. Therefore, any complex structure may be added above
the insertion and we would still obtain a sum of the same number of unlinked
diagrams. One obtains the modified theorem directly from the original the-
orem by cutting off the top of the principal part just above the insertion
(including the extra resolvent) and the top vertex of the insertion before
the expansion of the product, applying the original factorization theorem
and then restoring the deleted parts in the product and in all the unlinked
diagrams in the expansion. Obviously, restoring these parts does not affect
the validity of the expansion.

In the case of nested insertions the factorization theorem can be ap-
plied successively to the individual insertions, beginning with the innermost
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insertion and proceeding outwards. For example, we have

= + .

When deriving the linked-diagram theorem we do not need to continue the
expansion to the outer insertion, because the cancellation of the inner in-
sertion with the corresponding unlinked terms within the outer insertion
(shown on the right-hand side), owing to the sign change associated with
each insertion, produces a zero factor.

Similarly, an extension of the expansion to multiple insertions in the same
principal part can also be done sequentially, beginning with the lowest in-
sertion. For example,

= + .

Again, it is unnecessary to proceed further because of the zero factor result-
ing from the first expansion.

To prove the factorization theorem we consider the product of two dia-
grams, both open at the top, following Frantz and Mills (1960) (see also
Manne (1977) and Harris, Monkhorst and Freeman (1992), who deal specif-
ically with the case of a diagram with an insertion) and note that the al-
gebraic expressions for the diagram product and for all the different time
orderings in the sum of the comparably labeled disconnected diagrams have
the same numerator; then differ only in their denominators. Thus we have to
show that the sum of the appropriate denominator factors (1/εab...

ij... ) for the
disconnected diagrams is equal to the product of the denominator factors of
the product.

Let the number of resolvent lines, and thus the number of denomina-
tor factors, in the two diagrams of the product be n and m, respectively,
and let the corresponding denominators be written (from the bottom up)
as D1, D2, . . . , Dn and D′

1, D
′
2, . . . , D

′
m, respectively. This is described
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schematically by

Dn

Dn−1

Dn−2

D3

D2

D1

...

vertex n

vertex n − 1

vertex 3

vertex 2

vertex 1

D′
m

D′
m−1

D′
m−2

D′
3

D′
2

D′
1

...

vertex m

vertex m − 1

vertex 3

vertex 2

vertex 1

The same scheme also applies to the case of a diagram with an insertion if
we ignore all vertices and resolvents in the principal part above the insertion
and add a fixed vertex above D′

m in the other part. We denote the sum of the
denominator factors of the corresponding unlinked diagrams, summed over
all possible relative orderings of their vertices without change of ordering
within each disconnected part, by Snm. We need to show that this sum
is equal to the product of the denominator factors of the original diagram
product, i.e.

Snm =
1

D1D2 · · ·DnD′
1D

′
2 · · ·D′

m

. (6.1)

As an example, we shall consider the case with n = 3, m = 2. The sum
S32 consists of 10 terms, involving all possible time orderings of the two sets
of vertices relative to each other:

D3

D2

D1

D′
2

D′
1

R̂0 →
R̂0 →
R̂0 →
R̂0 →
R̂0 →

1
D1D2D3(D3 + D′

1)(D3 + D′
2)

D3

D2

D1

D′
2

D′
1

R̂0 →
R̂0 →
R̂0 →
R̂0 →
R̂0 →

1
D1D2(D2 + D′

1)(D3 + D′
1)(D3 + D′

2)
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D3

D2

D1

D′
2

D′
1

R̂0 →
R̂0 →
R̂0 →
R̂0 →
R̂0 →

1
D1(D1 + D′

1)(D2 + D′
1)(D3 + D′

1)(D3 + D′
2)

D3

D2

D1

D′
2

D′
1

R̂0 →
R̂0 →
R̂0 →
R̂0 →
R̂0 →

1
D′

1(D1 + D′
1)(D2 + D′

1)(D3 + D′
1)(D3 + D′

2)

D3

D2

D1

D′
2

D′
1

R̂0 →
R̂0 →
R̂0 →
R̂0 →
R̂0 →

1
D1D2(D2 + D′

1)(D2 + D′
2)(D3 + D′

2)

D3

D2

D1

D′
2

D′
1

R̂0 →
R̂0 →
R̂0 →
R̂0 →
R̂0 →

1
D1(D1 + D′

1)(D2 + D′
1)(D2 + D′

2)(D3 + D′
2)

D3

D2

D1

D′
2

D′
1

R̂0 →
R̂0 →
R̂0 →
R̂0 →
R̂0 →

1
D′

1(D1 + D′
1)(D2 + D′

1)(D2 + D′
2)(D3 + D′

2)
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D3

D2

D1

D′
2

D′
1

R̂0 →
R̂0 →
R̂0 →
R̂0 →
R̂0 →

1
D1(D1 + D′

1)(D1 + D′
2)(D2 + D′

2)(D3 + D′
2)

D3

D2

D1

D′
2

D′
1

R̂0 →
R̂0 →
R̂0 →
R̂0 →
R̂0 →

1
D′

1(D1 + D′
1)(D1 + D′

2)(D2 + D′
2)(D3 + D′

2)

D3

D2

D1
D′

2

D′
1

R̂0 →
R̂0 →
R̂0 →
R̂0 →
R̂0 →

1
D′

1D
′
2(D1 + D′

2)(D2 + D′
2)(D3 + D′

2)

These 10 terms should add up to (see (6.1))

1
D1D2D3D′

1D
′
2

.

It can be verified laboriously that they actually do so by bringing all 10
terms to a common denominator.

Returning to the general case, in each term of the sum Snm the contribu-
tion to the denominator from the topmost level of the diagram will be the
factor Dn + D′

m, and succeeding factors will have the form Dk + D′
l, until

we reach the region in which the two parts do not overlap, where we have
factors such as Dk (if the first part extends below the bottom of the second
part) or D′

l (if the second part extends below the bottom of the first part).
We extend the definition of Snm to the cases m = 0, in which there is no
second factor, and n = 0, in which there is no first factor. Both these cases
satisfy the theorem represented by (6.1) since

Sn0 =
1

D1D2 · · ·Dn
(6.2)
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and

S0m =
1

D′
1D

′
2 · · ·D′

m

. (6.3)

Our proof will be inductive, showing that if (6.1) holds for all n,m such
that n + m = k − 1 then this equation holds also for n + m = k. Equations
(6.2), (6.3) show that the equation holds for n + m = 1, as well as for S20

and S02. It is also very easy to verify the S11 case:

S11 =
1

D1(D1 + D′
1)

+
1

D′
1(D1 + D′

1)
=

1
D1 + D′

1

(
1

D1
+

1
D′

1

)
=

1
D1D′

1

,

(6.4)
so that the theorem holds for all n + m ≤ 2.

Now consider the case n ≥ 1, m ≥ 1, and divide the corresponding set
of unlinked diagrams into two classes, those in which the top vertex occurs
in the first part and those in which it occurs in the second part. The two
classes can be described schematically by

Dn

Dn−1
D′

m

R̂0 →
R̂0 →

...
...

and Dn
D′

m

D′
m−1

R̂0 →
R̂0 → ... ...

.

The contribution from the topmost level in both classes is the factor

1
Dn + D′

m

.

In the diagram class on the left this factor is multiplied by Sn−1,m (when we
allow all possible relative orderings of the remaining vertices), while in the
class on the right it is multiplied by Sn,m−1. Therefore

Snm =
1

Dn + D′
m

(Sn−1,m + Sn,m−1) . (6.5)

If the theorem holds for Sn−1,m and Sn,m−1, we can substitute the corre-
sponding products and obtain

Sn−1,m + Sn,m−1 =
(

1
D′

m

+
1

Dn

)
1

D1 · · ·Dn−1D′
1 · · ·D′

m−1

=
Dn + D′

m

D1D2 · · ·DnD′
1D

′
2 · · ·D′

m

,

(6.6)

so that

Snm =
1

Dn + D′
m

(Sn−1,m + Sn,m−1) =
1

D1D2 · · ·DnD′
1D

′
2 · · ·D′

m

, (6.7)
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satisfying the theorem. Since the theorem holds for n+m ≤ 2, it must hold
for all n,m.

It should be emphasized that, for the factorization theorem to hold, all
summations over internal lines must be unrestricted, including any EPV
terms. The EPV terms in the disconnected or unlinked diagrams are coun-
terbalanced in the MBPT expansions by the inclusion of such terms in the
summations for the linked diagrams as well, as discussed in subsection 5.7.5.

6.2 The linked-diagram theorem

The linked-diagram theorem states that the wave function and the correla-
tion energy are each given by a sum of linked diagrams only, provided that
all EPV terms are included in the summations for each diagram. It was first
stated by Brueckner (1955), who proved it explicitly for specific low orders
of the perturbation expansion and also asserted that it must be true at all
orders, because of the incorrect size dependence of the unlinked diagrams
and the renormalization terms. It was proved formally for all orders by
Goldstone (1957), in terms of both time-dependent and time-independent
diagrammatic techniques.

An elegant time-independent derivation was presented by Manne (1977),
who showed that all diagrams that contain unlinked parts or insertions, or
any combinations of these, cancel mutually leaving an expansion in terms
of linked diagrams only. This derivation is closely tied to the factorization
theorem in the form applicable to diagrams with insertions.

The direct diagrammatic expansion of RSPT using the bracketing proce-
dure described in subsection 2.4.6 (and see Fig. 2.1) includes diagrams that
contain insertions, as well as unlinked diagrams, i.e. diagrams that contain
separate closed parts. Each unlinked diagram may itself contain insertions
and each insertion may contain unlinked diagrams and further insertions, to
any depth.

We will consider first all unlinked wave function diagrams that contain a
linked (but possibly disconnected) open part, one separate closed part and
no insertions. Let us group together all those of a given order which have
the same open part and the same closed part and for which the top vertex
of the closed part is at the same level relative to the open part, with all
possible relative orderings of the other vertices of the closed part relative to
those of the open part, without change of ordering within each part (such
as the set of unlinked diagrams in the expansion in Fig. 6.1). According
to the factorization theorem, and because of the change of sign associated
in the perturbation expansion with each insertion, the diagrams in such a
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group cancel with the diagram in which the separate closed part is placed
as an insertion into the open part at the original level of the top vertex of
the closed part. The same procedure can be applied to groups of diagrams
with the top vertex of the closed part at any other level relative to the open
part; consequently all unlinked wave-function diagrams with one open part
cancel with all linked wave-function diagrams with one insertion containing
a single (i.e. linked) closed part.

The same procedure can be applied to unlinked energy diagrams consisting
of two closed parts where the part with the higher top vertex plays the
same role as the open part in the previous paragraph, thus proving the
cancellation of all two-part unlinked closed diagrams with the corresponding
insertions.

This approach can then be extended to diagrams with any combination of
separate closed parts and insertions, including cases with insertions that con-
tain unlinked diagrams or other insertions, as well as to unlinked diagrams
that contain insertions, to any depth. For the purpose of this extension,
following Manne we classify all the diagrams of a given order according to
the nature of the lowest-level separate item they contain; here a separate
item refers to an insertion at that level or to a separate closed part with top
vertex at that level. We will refer to the original diagram minus the lowest
separate item (but retaining the extra resolvent) as the remainder diagram.
This remainder diagram may be linked or unlinked, may have any number
of separate closed parts and may itself contain insertions.

If the lowest item is a separate closed part, we collect together all diagrams
of a given order that have that same lowest closed part with top vertex at
the same level relative to the remainder diagram, and the same remainder
diagram. In this case all these diagrams cancel with a corresponding diagram
with an insertion at the specified level.

If the lowest item is an insertion that contains no further insertions or
unlinked diagrams then, by the argument of the previous paragraph, it can-
cels against all the corresponding unlinked diagrams with a lowest unlinked
part having a top vertex at the same level. If, however, this lowest-item
insertion contains other insertions or unlinked diagrams then we consider
the remainder diagram as a fixed multiplicative factor and apply the same
procedure to the diagram within the insertion. Proceeding in this manner
until we reach the innermost insertion we find that all unlinked diagrams
and all diagrams that contain insertions cancel, leaving an expansion in
terms of linked diagrams only.

As an example, consider the following twelfth-order wave-function dia-
gram containing an unlinked principal part and two insertions, one of which
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contains an unlinked diagram:

The lowest separate item in this diagram is the lower insertion. Since this
insertion contains an unlinked diagram, we consider the rest of the diagram
(which is itself unlinked and contains an insertion) as a multiplicative factor
and focus our attention on the contents of the lower insertion. The lowest
separate item within this insertion is the separate closed part at its right,
because it has the lowest top vertex within the insertion. In this example
there is only one other diagram that can be grouped with it, differing from
it only in the relative levels of the lower vertices within the insertion:

According to the factorization theorem, the sum of these two diagrams can-
cels against the corresponding diagram with an inner insertion (which, like
all insertions, comes in with a sign change), regardless of the value of the
original remainder diagram:

All three of these diagrams would appear in the straightforward RSPT ex-
pansion of the twelfth-order wave function following the bracketing proce-
dure and, provided that all summations in all diagrams are unrestricted,
these and all other diagrams that contain unlinked parts or insertions can
be left out of the expansion.
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We shall consider briefly an alternative derivation of the linked-diagram
theorem along the lines of Goldstone’s time-independent derivation (Harris,
Monkhorst and Freeman 1992). In this derivation the linked-diagram ex-
pansions for the wave function and energy are substituted into the recursive
form (2.75) of the Schrödinger equation, and the factorization theorem is
used to show that this expansion satisfies the equation.

To prove this assertion we first rewrite (2.75) in a form appropriate for
RSPT,

|Ψ〉 = |0〉 + R̂0(Ŵ − ∆E)|Ψ〉 (6.8)

with

∆E = 〈0|Ŵ |Ψ〉 , (6.9)

where R̂0 ≡ R̂0(E0), Ŵ = V̂ − E(1) and ∆E = E − Eref = E − E0 − E(1).
The implicit equations (6.8), (6.9) for |Ψ〉 and ∆E are entirely equivalent
to the Schrödinger equation.

We need to prove that these equations are satisfied by the linked-diagram
expansions

|Ψ〉 =
∞∑

n=0

[
(R̂0Ŵ )n|0〉

]
L

, (6.10)

∆E =
∞∑

n=1

〈
0
∣∣Ŵ (R̂0Ŵ )n

∣∣0〉
L

, (6.11)

where the subscript L indicates that the summations are limited to linked
diagrams only (note that the n = 0 term is missing in the summation for
∆E in (6.11) because 〈0|Ŵ |0〉 = 0). We are going to prove this assertion
by substituting (6.10), (6.11) into the recursive equations (6.8), (6.9) and
showing that the latter are then satisfied.

We first substitute (6.10) in (6.9), obtaining

∆E =
∞∑

n=1

〈0|Ŵ [(R̂0Ŵ )n|0〉]L . (6.12)

It is easy to verify that all the closed diagrams that can be formed by adding
a new top vertex to the upwards-open linked n-vertex diagrams are linked
(because all disconnected parts of the open diagram must be closed by the
single added vertex) and constitute the complete set of all closed linked
(n + 1)-vertex diagrams. Therefore (6.12) is consistent with (6.9).
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Next we substitute (6.10) in (6.8), resulting in

|Ψ〉 = |0〉 +
∞∑

n=0

R̂0(Ŵ − ∆E)
[
(R̂0Ŵ )n|0〉

]
L

= |0〉 +
∞∑

n=0

R̂0Ŵ
[
(R̂0Ŵ )n|0〉

]
L
−

∞∑
n=0

∆E0R̂0

[
(R̂0Ŵ )n|0〉

]
L

. (6.13)

Each term of the first sum over n in the second line of (6.13) consists of
all the upwards-open (n+1)-vertex diagrams that can be formed by adding
one vertex (and the corresponding resolvent) to all upwards-open linked n-
vertex diagrams. Each resulting diagram either is linked or is unlinked with
a single separate closed part (if the added vertex closed a disconnected part
of the n-vertex open diagram) and has the top vertex of the closed part as
the top vertex of the entire diagram. We may therefore rewrite (6.13) in the
form

|Ψ〉 = |0〉 +
∞∑

n=0

[
R̂0Ŵ (R̂0Ŵ )n|0〉

]
L

+
∞∑

n=0

[
R̂0Ŵ [(R̂0Ŵ )n|0〉]L

]
U

−
∞∑

n=0

∆ER̂0

[
(R̂0Ŵ )n|0〉

]
L

, (6.14)

where the subscript U indicates restriction to unlinked terms. The factor-
ization theorem can then be used to show the cancellation of the last two
sums in this equation, because each term in the third sum can be described
by an open diagram with an insertion above its top vertex; this diagram
cancels the contributions to the second sum from the sum of corresponding
unlinked two-part open diagrams in which the top vertex of the closed part is
the top vertex of the entire diagram. The remaining terms of the right-hand
side are equivalent to the linked-diagram expansion (6.10), proving that this
expansion satisfies (6.8) and the Schrödinger equation.

The linked-diagram theorem accounts for the transition from RSPT to
MBPT, and is a major simplification of ordinary RSPT. As a result of the
linked-diagram requirement and the inclusion of EPV terms, there are no
renormalization terms and no restricted summations in the MBPT expan-
sions. In fact, MBPT assumes the simple, recursive form of BWPT while,
unlike BWPT, maintaining extensivity. In this form, RSPT has been re-
duced to its essentials, providing both an efficient computational tool and
a framework for the easy introduction of infinite-order summations of dia-
grams via the coupled-cluster methods described in Chapters 9 and 10.
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Computational aspects of MBPT

7.1 Techniques of diagram summation

The straightforward summation of individual MBPT diagrams is usually an
inefficient process. If the one-electron basis contains nh hole states (orbitals
occupied in Φ0) and np particle states (virtual orbitals), the number of terms
in the sum represented by a diagram with h internal hole lines and p internal
particle lines is n h

h n p
p . Using symmetries with respect to permutation of the

indices can reduce the number of distinct terms by some factor but the
overall number of terms is still of order n h

h n p
p , which may often be too large

for practical computation.
A variety of techniques are used to reduce the computational effort. The

principal approach involves the evaluation and reuse of various intermediate
quantities (partial sums). Another technique is the factorization of sums of
certain classes of diagrams, using a procedure analogous to the use of the
factorization theorem to factor sums of unlinked diagrams. The identifica-
tion of conjugate diagrams (Section 5.5) can also serve to reduce the number
of diagrams that need to be evaluated.

We will consider some examples from the fourth-order energy in discussing
efficient summation techniques. We will focus on the canonical HF case,
since diagrams containing one-particle vertices have fewer lines than the
corresponding diagrams with only two-particle vertices. First we examine
the double-excitation diagrams; see Fig. 5.8. Since typically np � nh, the
largest number of terms is represented by the particle ladder, diagram 14:

(i)

(a)

(c)

(e)

(j)

(b)

(d)

(f)

=
1
16

∑
abcdefij

〈ij‖ab〉〈ab‖cd〉〈cd‖ef〉〈ef‖ij〉
εab
ij εcd

ij εef
ij

. (7.1)
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The straightforward summation of (7.1) would involve n 2
h n 6

p terms (loosely
referred to as an n8 process). However, we can split this diagram into two
parts, separated by the middle resolvent line:

i

i

j

j

(a) (b)
c

c

d

d

(e) (f)

R̂0

∼
∑
ab

〈ij‖ab〉
εab
ij

〈ab‖cd〉 = (Scd
ij )∗

∼
∑
ef

〈cd‖ef〉〈ef‖ij〉
εef
ij

= Scd
ij

(7.2)

(noting that a, b, e, f are dummy summation indices). Summation of the
product of these two partial sums over c, d, i, j after insertion of the denomi-
nator corresponding to the middle resolvent line produces the complete sum
for the diagram,

1
16

∑
cdij

|Scd
ij |2

εcd
ij

=
1
4

∑
c>d
i>j

|Scd
ij |2

εcd
ij

.

The last form of this expression uses the relationships Scd
ij = −Sdc

ij = −Scd
ji =

Sdc
ji and Scc

ij = Scd
ii = 0, which arise from the use of antisymmetric two-

electron integrals. The evaluation of Scd
ij is proportional in effort to n 2

h n 4
p

(there are n 2
h n 2

p sums to be computed, each requiring n 2
p contributions).

The final sum is much faster, being proportional to n 2
h n 2

p . The complete
procedure thus amounts to an n 2

h n 4
p process, loosely referred to as n6.

Note that each half-diagram in (7.2) is a second-order wave-function dia-
gram, in either ket (bottom) or bra (top) form. As a wave-function diagram,
each half would include a factor 1

8 (for three pairs of equivalent lines) and its
own εcd

ij denominator (see subsection 5.6.2). However, because the c, d, i, j

lines and the resolvent line are actually common to the two parts, we have
to remove a factor 1

4 (for two common pairs of equivalent lines) and one de-
nominator, leaving the above result. Note also that each term in the partial
sums contains a first-order wave-function coefficient such as 〈ef‖ij〉/εef

ij , the

coefficient of |Φef
ij 〉 in |Ψ(1)〉.

For another example, consider diagram 7 of Fig. 5.8:

(i)

(a)

(c)
(k)

(j)
(b)

(d)

(l) =
∑

abcdijkl

〈ij‖ab〉〈al‖cj〉〈kb‖id〉〈cd‖kl〉
εab
ij εbc

il ε
cd
kl

. (7.3)
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In this case the partial sum will be

T bc
il =

∑
dk

〈kb‖id〉〈cd‖kl〉
εcd
kl

, (7.4)

an n 3
h n 3

p process, and the complete sum is given by

∑
bcil

(T cb
li )∗T bc

il

εbc
il

.

For one more example of a double-excitation diagram, consider diagram
8 of Fig. 5.8:

(i)

(a)

(c)
(k)

(j)

(b)

(d)

(e)

= −1
4

∑
abcdeijk

〈ij‖ab〉〈ab‖cd〉〈kd‖ie〉〈ce‖kj〉
εab
ij εcd

ij εce
jk

. (7.5)

Using the partial sums (7.2), (7.4) of the previous two examples, the com-
plete sum for this diagram is given by

−1
4

∑
cdij

(Scd
ij )∗T dc

ij

εcd
ij

.

These examples demonstrate how the same partial sum can be used in
the evaluation of more than one diagram. Using the partial summation
technique, the evaluation of all the double-excitation diagrams in fourth
order involves at most an n 2

h n 4
p (∼ n6) computational process.

Next we consider fourth-order triple-excitation diagrams, Fig. 5.9, and
take diagram 25 as an example:

(k) (d)

(a)

(c)
(i)

(b)

(e)

(j) =
1
2

∑
abcdeijk

〈ij‖ab〉〈ak‖cd〉〈db‖ke〉〈ce‖ij〉
εab
ij εbcd

ijkεce
ij

.

(7.6)
Because of the triple-excitation factor in the denominator, we are forced to
use a six-index partial sum,

U bcd
ijk =

∑
e

〈db‖ke〉〈ce‖ij〉
εab
ij

, (7.7)

requiring an n 3
h n 4

p (∼ n7) computational process. The complete sum for
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this diagram is then

1
2

∑
bcdijk

(U cbd
jik )∗U bcd

ijk

εbcd
ijk

.

Applying the same approach to the fourth-order quadruple-excitation
diagrams would have resulted in an n8 process because of the quadruple-
excitation factor in the denominator. However, as is shown below in Sec-
tion 7.2, a factorization similar to that derived in the factorization the-
orem eliminates the quadruple-excitation denominator factor and reduces
the computational effort for these diagrams to an n6 process, leaving the
triple-excitation contribution as the most computationally demanding part
of a fourth-order energy calculation.

7.2 Factorization of fourth-order quadruple-excitation diagrams

As stated in Section 5.9, evaluation of the quadruple-excitation diagrams in
the fourth-order energy (Fig. 5.10) requires less computational effort than
needed for the triple-excitation contributions (Fig. 5.9). Both types of dia-
gram involve summations over eight indices and, while partial summations
reduce the computational effort for the triple-excitation diagrams to order
n7, the quadruple-excitation diagrams can actually be evaluated in an at
most n6 process. This is accomplished by a technique similar to that used
in the proof of the factorization theorem, adding together diagrams that
differ only in the time ordering of their lowest two vertices.

Adding diagrams 34 and 40 in Fig. 5.10 we get

(d) (l)(c)

(b)(i) (a)

(k)

(j) + (i) (a)(b) (c)(d) (l)

(j)

(k)

= −1
4

∑
abcdijkl

〈ij‖ab〉〈kl‖cd〉〈ab‖ik〉〈cd‖jl〉 1
εab
ij εabcd

ijkl

(
1

εcd
jl

+
1

εab
ik

)

= −1
4

∑
abcdijkl

〈ij‖ab〉〈kl‖cd〉〈ab‖ik〉〈cd‖jl〉 1
εab
ij εcd

jl ε
ab
ik

. (7.8)

As a result of this factorization the quadruple-excitation denominator is
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eliminated, allowing the use of partial summation in the forms

Sjk =
∑
cdl

〈kl‖cd〉〈cd‖jl〉
εcd
jl

,

Tjk =
∑
abi

〈ij‖ab〉
εab
ij

〈ab‖ik〉
εab
ik

.

(7.9)

This procedure is just an n 3
h n 2

p (∼ n5) process for each partial sum. The
final sum is an n 2

h process, ∑
jk

TjkSjk .

The same procedure can be used for the sum of diagrams 35 and 39, which
can be obtained from 34 and 40, respectively, by reversing the directions of
all the arrows. The computation of the partial sums in this case is an n 2

h n 3
p

process and the final sum is an n 2
p process.

Next we consider the sum of diagrams 36 and 37:

(j)(l)(k)(i)

(a)

(c)

(b)

(d)

+ (b)(d)(c)(a)

(i)

(k)

(j)

(l)

=
1
16

∑
abcdijkl

〈ij‖ab〉〈kl‖cd〉〈ab‖kl〉〈cd‖ij〉 1
εab
ij εabcd

ijkl

(
1

εcd
ij

+
1

εab
kl

)

=
1
16

∑
abcdijkl

〈ij‖ab〉〈ab‖kl〉〈kl‖cd〉〈cd‖ij〉 1
εab
ij εcd

ij εab
kl

. (7.10)

In this case the partial sums involve n6 processes:

Sijkl =
∑
ab

〈ij‖ab〉
εab
ij

〈ab‖kl〉 ,

Tijkl =
∑
cd

〈kl‖cd〉
εcd
kl

〈cd‖ij〉
εcd
ij

.

(7.11)

The final sum is an n4 process,

1
16

∑
ijkl

TijklSijkl .

The above factorizations take care of six of the seven HF-case linked
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quadruple-excitation fourth-order diagrams (Fig. 5.10). The remaining dia-
gram, number 38, can be handled by writing it as a sum of two equivalent
diagrams and factoring the sum as before:

=
1
2

(a) (i)
(j) (b)

(d) (l)
(k) (c)

+
1
2

(a) (i)
(j) (b)

(d) (l)
(k) (c)

=
1
2

∑
abcdijkl

〈ij‖ab〉〈kl‖cd〉〈db‖lj〉〈ac‖ik〉 1
εab
ij εabcd

ijkl

(
1

εac
ik

+
1

εbd
jl

)

=
1
2

∑
abcdijkl

〈ij‖ab〉〈kl‖cd〉〈bd‖jl〉〈ac‖ik〉 1
εab
ij εac

ikεbd
jl

.

(7.12)

The partial sums can be chosen as

Sbc
jk =

∑
dl

〈kl‖cd〉〈bd‖jl〉
εbd
jl

,

T bc
jk =

∑
ai

〈ij‖ab〉
εij
ab

〈ac‖ik〉
εac
ik

,

(7.13)

which are n6 processes, and the final sum is an n4 process:

1
2

∑
bcjk

T bc
jkSbc

jk .

The summation methods described here are not the only feasible pro-
cesses, and the choice of procedure depends also on the maximum utilization
of sums computed in lower orders (see e.g. Bartlett and Shavitt 1977b).

7.3 Spin summations

So far the formalism has been specified in terms of spinorbitals, and no at-
tempt has been made to consider the effects of spin. However, since the non-
relativistic Hamiltonian does not contain spin coordinates, integration over
the spin variables is easily carried out and results in significant economies
in the calculations.

The simplest way in which spin affects the PT summations is that some
integrals vanish because of spin orthogonality. Thus if we indicate the spin
factor of a spinorbital by putting a bar over β spinorbitals, and no bar over
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α’s, we have

〈pq‖rs〉 = 〈pq|v̂|rs〉 − 〈pq|v̂|sr〉,
〈pq‖rs〉 = 〈pq|v̂|rs〉,
〈pq‖rs〉 = −〈pq|v̂|sr〉,
〈pq‖rs〉 = 〈pq|v̂|rs〉,
〈pq‖rs〉 = −〈pq|v̂|sr〉,
〈pq‖rs〉 = 〈pq|v̂|rs〉 − 〈pq|v̂|sr〉,

(7.14)

where the integrals on the r.h.s. are over the spatial factors only, and

〈pq‖rs〉 = 〈pq‖rs〉 = 〈pq‖rs〉 = 〈pq‖rs〉 = 0,

〈pq‖rs〉 = 〈pq‖rs〉 = 0,

〈pq‖rs〉 = 〈pq‖rs〉 = 〈pq‖rs〉 = 〈pq‖rs〉 = 0 .

(7.15)

Thus, out of the 16 possible combinations of spin assignments to the four or-
bitals in an antisymmetric two-electron integral, 10 of the resulting integrals
vanish completely and four are reduced to a single spatial integral.

Spin integration in the case of a general spinorbital basis, such as one
consisting of UHF spinorbitals, results in some reduction in computational
effort; however, much more significant economies result if we have a spin-
adapted basis, as in RHF, in which each spatial orbital appears twice, once
with spin α (say p) and once with spin β (p). Taking the second-order energy
in the canonical RHF case as an example, and using (7.14), (7.15), we have:

(a) (i) (b)(j)

=
1
4

∑
abij

1
εab
ij

[
〈ij‖ab〉〈ab‖ij〉 + 〈ij‖ab〉〈ab‖ij〉 + 〈ij‖ab〉〈ij‖ij〉

+ 〈ij‖ab〉〈ab‖ij〉 + 〈ij‖ab〉〈ab‖ij〉 + 〈ij‖ab〉〈ab‖ij〉
]

=
1
4

∑
abij

1
εab
ij

[
2〈ij‖ab〉〈ab‖ij〉 + 2〈ij|v̂|ab〉〈ab|v̂|ij〉 + 2〈ij|v̂|ba〉〈ba|v̂|ij〉

]

=
1
2

∑
abij

1
εab
ij

[
〈ij|v̂|ab〉〈ab|v̂|ij〉 − 〈ij|v̂|ab〉〈ba|v̂|ij〉 − 〈ij|v̂|ba〉〈ab|v̂|ij〉

+ 〈ij|v̂|ba〉〈ba|v̂|ij〉 + 〈ij|v̂|ab〉〈ab|v̂|ij〉 + 〈ij|v̂|ba〉〈ba|v̂|ij〉
]
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=
1
2

∑
abij

1
εab
ij

[
2〈ij|v̂|ab〉〈ab|v̂|ij〉 + 2〈ij|v̂|ba〉〈ba|v̂|ij〉

− 〈ij|v̂|ab〉〈ba|v̂|ij〉 − 〈ij|v̂|ba〉〈ab|v̂|ij〉
]
,

where the summations are over the distinct spatial orbitals only and zero
terms have been left out. Since a, b are dummy summation indices and can
be interchanged, we find that the first two terms in the brackets are equal
(after summation), and so are the third and fourth. Thus

(a) (i) (b)(j) =
∑
abij

2〈ij|v̂|ab〉〈ab|v̂|ij〉 − 〈ij|v̂|ab〉〈ba|v̂|ij〉
εab
ij

=
∑
abij

〈ij|v̂|ab〉
εab
ij

[2〈ab|v̂|ij〉 − 〈ba|v̂|ij〉] . (7.16)

Similar treatments hold for other terms. More general diagram interpreta-
tion rules can be derived to obtain the spin-independent form directly from
the diagram, at least for the Goldstone diagram case (see e.g. Paldus and
Č́ıžek 1975), for which we simply get an extra 2l factor for the summation
over spatial orbitals. This factor arises because in each closed loop of a
Goldstone diagram all spin factors must be equal, and they may be either
all α or all β. Thus a viable procedure for spin-adapted bases is to expand
each ASG diagram into ordinary Goldstone diagrams and to sum them over
orbital labels only, with a factor of 2l for each diagram. Summing over spa-
tial orbitals reduces the range of each summation by a factor of two, but
even when summing over spinorbitals in a UHF-type treatment the number
of nonzero contributions is reduced very substantially by spin orthogonality
and by the requirement of spin continuity along each loop.
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Open-shell and quasidegenerate perturbation theory

8.1 Formal quasidegenerate perturbation theory (QDPT)

As is well known, ordinary Rayleigh–Schrödinger perturbation theory breaks
down when applied to a state that is degenerate in zero order, unless spin or
symmetry restrictions eliminate all but one of the degenerate determinants
from the expansion. The breakdown is due to singularities arising from
the vanishing of denominators involving differences in energy between the
reference determinant and determinants that are degenerate with it. Even
when exact zero-order degeneracies are not present but two or more close-
lying zero-order states contribute strongly to the wave function, as is the
case for many excited states or in situations involving bond breaking, the
RSPT expansions tend either to diverge or to converge very slowly.

These problems commonly arise in the case of open-shell states because
different distributions of the open-shell electrons among the open-shell or-
bitals, all with the same or very similar total zero-order energies, are possi-
ble. Many open-shell high-spin states can be treated effectively with single-
reference-determinant methods using either unrestricted or restricted open-
shell HF reference determinants because the spin restrictions exclude al-
ternative assignment of the electrons to the open-shell orbitals; however,
low-spin states, such as open-shell singlets, require alternative approaches.

Several common series-extrapolation techniques can be used to speed up
the convergence of a perturbation expansion or to obtain an approximate
limit of a divergent series. The results of such an extrapolation usually im-
prove as more of the early terms of the series become available. Approaches
based on Padé approximants (closely related to continued fractions) have
been applied in some studies (e.g. Reid 1967, Goscinski 1967, Brändas and
Goscinski 1970, Bartlett and Brändas 1972, Bartlett and Shavitt 1977b,
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Swain 1977). A more general solution to these problems is found in a
multireference version of perturbation theory, called open-shell or degen-
erate perturbation theory in the case of exactly degenerate zero-order states
and quasidegenerate perturbation theory (QDPT) in the more general case.

The equation governing degenerate perturbation theory is the Bloch equa-
tion (Bloch 1958, Bloch and Horowitz 1958),

(E0 − Ĥ0)ΩP̂ = V̂ ΩP̂ − ΩP̂ V̂ ΩP̂ . (8.1)

It is easily generalized to the quasidegenerate case (Lindgren 1974, Kvasnička
1974), in which no single E0 is identified, in the form seen in (2.198):

[Ω, Ĥ0]P̂ = V̂ ΩP̂ − ΩP̂ V̂ ΩP̂ . (8.2)

In these equations P̂ is the projector onto the model space, the space spanned
by the reference functions (model functions) Φα,

P̂ =
∑
α

|Φα〉〈Φα| =
∑
α

P̂α , P̂α = |Φα〉〈Φα| , (8.3)

and Ω is the wave operator, which, when operating on the model space,
produces the space spanned by the perturbed wave functions

Ψα = ΩΦα = ΩP̂Φα . (8.4)

The projector onto the orthogonal or complementary space, the space
spanned by all the functions ΦI that are not in the model space, is

Q̂ = 1̂ − P̂ =
∑

I

|ΦI〉〈ΦI | =
∑

I

Q̂I , Q̂I = |ΦI〉〈ΦI | . (8.5)

Since the ΩQ̂ part of Ω is irrelevant it is convenient to set it to zero, so that

Ω = ΩP̂ . (8.6)

With intermediate normalization Ω is split into two components,

Ω = P̂ + Q̂Ω , (8.7)

and it follows that

P̂Ω = P̂ . (8.8)

As noted in Section 2.5, Ω = Û P̂ , where Û is the transformation operator
that block-diagonalizes the Hilbert space into a P̂ block and a Q̂ block.

The model functions Φα are eigenfunctions of Ĥ0 but, because of their
degeneracy or quasidegeneracy, it is to be expected that each eigenfunc-
tion of the full Hamiltonian Ĥ will contain sizable contributions from more
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than one model function. The intermediately normalized wave operator can-
not directly produce this mixing since, as seen from (8.7), it merely adds
contributions from the Q̂-space to each model function. As discussed in
Section 2.5, a final transformation among the perturbed functions Ψα is
required to produce the eigenfunctions Ψ̃α of Ĥ:

Ψ̃α =
∑
β

ΨβCβα =
∑
β

ΩΦβCβα = ΩΦ̃α , (8.9)

where

Φ̃α =
∑

β

ΦβCβα (8.10)

are the properly mixed zero-order functions for the problem, also called
bonnes fonctions (Bloch 1958). The transformation matrix C is determined,
together with the energies, by a final diagonalization of the effective Hamil-
tonian Ĥeff, as discussed further below.

The relationships between the different functions and the wave operator
Ω can be summarized in the following set of equations:

Ψα = Φα + Q̂ΩΦα , Ψ̃α = Φ̃α + Q̂ΩΦ̃α , (8.11)

P̂Ψα = Φα , P̂ Ψ̃α = Φ̃α , (8.12)

ΩΨα = ΩΦα = Ψα , ΩΨ̃α = ΩΦ̃α = Ψ̃α , (8.13)

P̂ΩΦα = P̂Ψα = Φα , P̂ΩΦ̃α = P̂ Ψ̃α = Φ̃α . (8.14)

Since the generalized Bloch equation contains the exactly degenerate case
as a special case, we may confine our attention to the generalized equation.
This equation was derived in Section 2.5 using a similarity transformation
approach. A more conventional derivation, following the procedure of Lind-
gren and Morrison (1986) with some modifications, will now be given.

Using (8.9) for the exact eigenfunctions Ψ̃α of Ĥ, the Schrödinger equation
can be written in the form

ĤΩΦ̃α = EαΩΦ̃α . (8.15)

Partitioning the Hamiltonian as Ĥ = Ĥ0 + V̂ , with Ĥ0Φα = E
(0)
α Φα, we can

rewrite (8.15) in the form

(Eα − Ĥ0)ΩΦ̃α = V̂ ΩΦ̃α . (8.16)

Operating on (8.16) from the left with Ω and using (8.8) and the commuta-
tion of Ĥ0 and P̂ , we obtain

EαΩΦ̃α − ΩĤ0Φ̃α = ΩV̂ ΩΦ̃α . (8.17)
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Subtracting (8.17) from (8.16), we eliminate the term containing Eα and
obtain an implicit equation for Ω,

(−Ĥ0Ω + ΩĤ0)Φ̃α = (V̂ Ω̂ − ΩV̂ Ω)Φ̃α . (8.18)

This equation must be true for all Φ̃α; furthermore, since the Eα no longer
appear, it must be true for any linear combination of the Φ̃α, so we may
replace Φ̃α with P̂ , obtaining

[Ω, H0] = V̂ Ω − ΩV̂ Ω , (8.19)

which is the generalized Bloch equation (8.2) with Ω = ΩP̂ .
Operating on (8.15) from the left with P̂ , we obtain

P̂ ĤΩΦ̃α = EαΦ̃α . (8.20)

Defining an effective Hamiltonian

Ĥeff ≡ P̂ ĤΩP̂ = P̂ ĤΩ , (8.21)

we find that

ĤeffΦ̃α = EαΦ̃α . (8.22)

This equation operates entirely in P̂ -space and shows that the correctly
mixed zero-order functions Φ̃α and thus the transformation coefficients Cβα

of (8.9), (8.10), as well as the corresponding eigenenergies Eα of Ĥ, can be
obtained by solving the P̂ -space eigenvalue problem for the non-Hermitian
effective Hamiltonian Ĥeff.

The definition (8.21) of Ĥeff has an appearance that is different from the
definition (2.159) but these definitions are equivalent in P̂ -space, as will now
be shown. As in Section 2.5, we split the effective Hamiltonian into a zero-
order part and a correction by substituting Ĥ = Ĥ0+V̂ into (8.21), obtaining

Ĥeff = P̂ Ĥ0Ω + P̂ V̂ Ω

= Ĥ0P̂ + Ŵ , (8.23)

where

Ŵ = P̂ Ŵ P̂ = P̂ V̂ Ω (8.24)

is the level-shift operator, also called the reaction operator. This equation
for Ŵ corresponds to (2.179).

As seen in (8.7), the P̂ΩP̂ part of the wave operator is given simply by
P̂ . In order to obtain the Q̂ΩP̂ part we operate on the generalized Bloch
equation (8.19) from the left with Q̂ and from the right with P̂α:

Q̂[Ω, Ĥ0]P̂α = Q̂V̂ ΩP̂α − Q̂ΩV̂ ΩP̂α . (8.25)
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Applying the procedure of (2.185), (2.186), the commutator equation is
replaced by the following equation involving a resolvent:

Q̂ΩP̂α = R̂αV̂ ΩP̂α − R̂αΩV̂ ΩP̂α

= R̂αV̂ ΩP̂α − R̂αΩŴ P̂α ,
(8.26)

where R̂α, the zero-order resolvent for the model function Φα, is given by

R̂α = Q̂(E(0)
α − Q̂Ĥ0Q̂)−1Q̂ ≡ Q̂

E
(0)
α − Ĥ0

. (8.27)

Expanding Ω and Ŵ in orders of V̂ ,

Ω = P̂ + Q̂Ω(1) + Q̂Ω(2) + · · · , (8.28)

Ŵ = Ŵ (1) + Ŵ (2) + · · · (8.29)

(since Ŵ (0) = 0), we can solve (8.26) order by order, obtaining

Q̂Ω(1)P̂α = R̂αV̂ P̂α,

Q̂Ω(n)P̂α = R̂αV̂ Q̂Ω(n−1)P̂α −
n−1∑
m=1

R̂αΩ(m)Ŵ (n−m)P̂α (n ≥ 2)
(8.30)

and

Ŵ (1) = P̂ V̂ P̂ ,

Ŵ (n) = P̂ V̂ Q̂Ω(n−1) (n ≥ 2) .
(8.31)

These equations are equivalent to (2.189), (2.190), and are valid for both
QDPT and nondegenerate RSPT, for which there is only one model state,
Φα = Φ0.

A more explicit form of (8.30), (8.31) can be obtained by defining the
matrix elements

Wβα = 〈Φβ |Ŵ |Φα〉 , (8.32)

ΩIα = 〈ΦI |Ω|Φα〉 (8.33)

etc., where the lower-case Greek indices run over model states and the upper-
case Latin indices run over the orthogonal (Q̂-space) states. The perturbed
wave functions are then given by

|Ψα〉 = Ω|Φα〉 = |Φα〉 +
∑

I

|I〉ΩIα = |Φα〉 + |χα〉 , (8.34)

where

|χα〉 =
∑

I

|I〉ΩIα (8.35)
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is the perturbation correction to |Φα〉. We also define

RI
α = 〈ΦI |R̂α|ΦI〉 = 〈ΦI |Q̂(E(0)

α − Q̂Ĥ0Q̂)−1Q̂|ΦI〉 ≡
〈
ΦI

∣∣∣ Q̂

E
(0)
α − H0

∣∣∣ΦI

〉
,

(8.36)

where the last form is short-hand notation for the more complete expression.
In the diagonal case, in which Ĥ0 is diagonal in the space of all the ΦI and
Φα states, this expression simplifies to

RI
α =

1

E
(0)
α − E

(0)
I

=
1

DαI
, (8.37)

where

DαI = E(0)
α − E

(0)
I . (8.38)

The diagonal case is assumed in the diagrammatic formulation that follows.
In either the diagonal or the non-diagonal case we then have

Ω(1)
Iα = RI

αVIα,

Ω(n)
Iα =

∑
J

RI
αVIJΩ(n−1)

Jα −
n−1∑
m=1

∑
β

RI
αΩ(m)

Iβ W
(n−m)
βα (n ≥ 2)

(8.39)

and

W
(1)
βα = Vβα,

W
(n)
βα =

∑
I

VβIΩ
(n−1)
Iα (n ≥ 2) .

(8.40)

The last term in (8.39) corresponds to the renormalization term in non-
degenerate RSPT but, unlike the nondegenerate case, in which this term
cancels unlinked-diagram contributions to the principal term in the many-
body form of PT, certain parts of the renormalization term survive in the
form of “folded diagrams” in the degenerate and quasidegenerate cases,
as will be shown explicitly in the diagrammatic formulation that
follows.

Successively replacing high-order terms on the right-hand sides of (8.39),
(8.40) by expressions in terms of lower-order terms, these equations can be
expressed fully in terms of resolvent operators and matrix elements of the
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perturbation operator V̂ . The results for the second and third orders are

W
(2)
βα =

∑
I

VβIR
I
αVIα , (8.41)

Ω(2)
Iα =

∑
J

RI
αVIJRJ

αVJα −
∑
β

RI
αRI

βVIβVβα , (8.42)

W
(3)
βα =

∑
IJ

VβIR
I
αVIJRJ

αVJα −
∑
Iγ

VβIR
I
αRI

γVIγVγα , (8.43)

Ω(3)
Iα =

∑
JK

RI
αVIJRJ

αVJKRK
α VKα −

∑
Jβ

RI
αVIJRJ

αRI
βVJβVβα

−
∑
Jβ

RI
αRI

βVIβVβJRJ
αVJα −

∑
Jβ

RI
αRI

βVIJRJ
βVJβVβα

+
∑
βγ

RI
αRI

βRI
γVIγVγβVβα . (8.44)

The first two terms on the right-hand side of (8.44) result from substitution
of (8.42) into the principal term of Ω(3)

Iα , which is found from (8.39). The
third term corresponds to the m = 1 contribution to the renormalization
term, while the last two terms correspond to the m = 2 contribution (since
Ω(2)

Iβ generates two terms). These explicit forms are easily connected to the
diagrammatic representations, which are based on expressions in terms of
resolvents and perturbation-operator components only.

Defining the cumulative nth-order effective Hamiltonian by

Ĥeff(n) ≡ Ĥ0 +
n∑

m=1

Ŵ (m) (n ≥ 1) , (8.45)

so that

H
eff(n)
βα = 〈Φβ |Ĥeff(n)|Φα〉 = δβαE(0)

α +
n∑

m=1

W
(m)
βα (n ≥ 1) , (8.46)

the coefficients C
(n)
βα that define the transformation of the nth order per-

turbed functions to the proper eigenfunctions of the full Hamiltonian Ĥ and
also the corresponding nth order eigenvalues E

(n)
α are obtained by solving

the non-Hermitian matrix eigenvalue problem∑
β

Ĥ
eff(n)
γβ C

(n)
βα = Cn

γαE(n)
α . (8.47)
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8.2 The Fermi vacuum and the model states

The one-electron states (spinorbitals) in QDPT are divided into three
classes. The core states are those spinorbitals that are occupied in all the
reference determinants (model states), the valence states are occupied in
some, but not all, model states and the virtual states are unoccupied in all
the model states.

In nondegenerate many-body PT the Fermi vacuum state, which deter-
mines the Fermi level separating the one-electron states into particle and hole
states, is the reference determinant. In QDPT there are multiple reference
determinants, so the assignment of the Fermi vacuum is not immediately
obvious. Commonly (Sandars 1969), the Fermi vacuum state in QDPT is
chosen as a determinant made up of all the core states. Usually this is a
closed-shell state, and obviously, it contains fewer electrons than the target
states of the calculation. The Fermi level, the boundary between the particle
and hole states, is then placed between the core and valence states, as shown
schematically in the level diagram in Fig. 8.1. Here the labels u, v, w, . . . are
used for the valence states while the labels i, j, k, . . . and a, b, c, . . . refer to
the hole and particle states, respectively, as before. The model states are
then described by the action of valence-state creation operators on the Fermi
vacuum; for example,

|Φuvw〉 = û†v̂†ŵ†|0〉 . (8.48)

Other choices for the Fermi vacuum are possible, in which the boundary
between the hole and particle states is put either within or at the top of
the valence space. In these cases the model states are described by the
action of valence-state annihilation (and possibly creation) operators on the
Fermi vacuum. In the present treatment we shall limit ourselves to the first-
mentioned choice for the Fermi vacuum, consisting of all the one-electron
states shared by all the model states.

With the Fermi level placed at the bottom of the valence space, the Fermi
vacuum state contains fewer electrons than the model states and so cannot
be one of them. Nevertheless, with the second-quantization notation for
operators, in which the number of electrons does not appear explicitly, the
same operator definitions can still be used for the Fermi vacuum state and
for the states of interest in the calculation.

With hole and particle states defined as in Fig. 8.1, the partitioning of the
Hamiltonian and the normal-ordered form of its components are the same
in QDPT as in nondegenerate PT (Section 3.5 and subsection 3.6.3). We
shall also continue to use the same definition of the auxiliary operator Û ,
see (3.129), (3.132) and (3.133), as in nondegenerate PT, the summations
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...
}

Core

}
Holes (i, j, . . .)

...
}

Valence (u, v, . . .)

...
}

Virtual

}
Particles (a, b, . . .)

Fig. 8.1. Classification of one-electron states in QDPT.

in (3.132), (3.133) being over the hole (core) states; this choice retains the
simplifications seen in subsection 3.6.3 in the normal-ordered form of the
perturbation operator. The operator F̂ , (3.130), is the Fock operator for the
Fermi vacuum state. If we want this operator to be diagonal (as in canonical
HF) or block diagonal (as in noncanonical HF), in order to take advantage
of the resulting elimination or reduction of diagrams involving one-electron
operators, we need to use the HF wave function and one-electron states
corresponding to the Fermi vacuum state. It should be realized that the HF
spinorbitals of the Fermi vacuum state and their orbital energies may be
less than optimal for rapid convergence of the perturbation expansion for
the quasidegenerate states (an alternative choice may be the use of MCSCF
spinorbitals of the model space), but they are often used because of the
resulting simplifications.

In the most common form of diagrammatic QDPT the model space is
chosen to be complete; i.e. all possible assignments of the valence electrons
in the valence states are included in the model states. While the choice of
a complete model space simplifies the formalism, it has two important dis-
advantages. First, such a model space is often inordinately large, adversely
impacting the feasibility of the calculation. Second, even if the size of the
model space is not excessive, a complete model space often includes many
high-energy determinants that are not expected to contribute significantly
to the wave function. Such high-energy determinants result when multiple
valence electrons are placed in the highest valence orbitals, which are often
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higher in energy than some of the external (Q̂-space) determinants, leading
to the phenomenon of intruder states. Intruder states are Q̂-space states
with zero-order energies lying within the range of model-state zero-order
energies. Such states usually generate small denominators in the perturba-
tion expansions, leading to divergence or extremely slow convergence. The
convergence of a PT expansion is generally enhanced by having a wide gap,
in the zero-order energies, between the model states and all the orthogonal-
space states. Such a gap is usually not achievable with complete model
spaces, even when they do not lead to intruder states.

As a result of these difficulties, complete-model-space methods rarely pro-
vide practical solutions for problems involving quasidegenerate states, and
few applications of such methods to electronic structure problems have been
made. Nevertheless the relative formal simplicity of this approach is instruc-
tive, and so the resulting diagrammatic methods will be described in detail
in Sections 8.4–8.6. Formalisms for incomplete model spaces in QDPT are
discussed in Section 8.7.

8.3 Normal-product form of the generalized Bloch equations

In order to use in degenerate MBPT the generalized Wick’s theorem and the
diagrammatic techniques employed so effectively in the nondegenerate case,
it is most convenient to use the normal-product form of the perturbation
operator (see subsection 3.6.3),

V̂N = V̂ − 〈0|V̂ |0〉 , (8.49)

where |0〉 represents the Fermi vacuum, i.e. the core state. It is also conve-
nient to define a modified level-shift operator

Ŵ ′ ≡ Ŵ − 〈0|V̂ |0〉 . (8.50)

In the series expansion (8.29) for Ŵ , only the first-order part is modified,

Ŵ ′(n) = Ŵ (n) − δn1〈0|V̂ |0〉 , (8.51)

and the effective Hamiltonian can be expanded as

Ĥeff = Ĥ0 + 〈0|V̂ |0〉 + Ŵ ′(1) + Ŵ (2) + Ŵ (3) + · · · . (8.52)

The modified level-shift operator (8.50) is the analog of the correlation en-
ergy in the nondegenerate theory, while Ĥ0 + 〈0|V̂ |0〉 is the analog of Eref.

The other operators obtained by contractions based on the generalized
Wick’s theorem, i.e. the various components of the wave operator and the
level-shift operator, will automatically be in normal order.
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With these definitions, the order-by-order generalized Bloch equations
(8.30), (8.31) remain valid if V̂ and Ŵ (1) are replaced by V̂N and Ŵ ′(1). The
relevant elements of these operators are given by

(
V̂N

)
IJ

= VIJ − δIJ〈0|V̂ |0〉 ,
(
V̂N

)
βα

= Vβα − δβα〈0|V̂ |0〉 ,
(
V̂N

)
Iα

= VIα ,

(8.53)

W
′(1)
βα = W

(1)
βα − δβα〈0|V̂ |0〉 . (8.54)

The detailed forms of the generalized Bloch equations (8.39)–(8.44) also
remain valid if the matrix elements in them are replaced by these modified
versions. Note in particular that the equation in (8.40) for W

(n)
βα , n ≥ 2,

is not affected by the modifications because the off-diagonal elements VαI

are not modified. In the equation in (8.39) for Ω(n)
Iα the modifications in the

principal and renormalization terms cancel.
In the rest of this chapter we shall assume that the various operators

and their matrix elements have been replaced by their modified versions
but, in order not to encumber the notation, we shall omit the N subscript
and the prime on the perturbation and level-shift operators and their matrix
elements. We shall therefore be able to use the normal-ordered perturbation
operator in the form given in subsection 3.6.3 and to apply the contractions
based on the generalized Wick’s theorem in the diagrammatic development
of QDPT.

8.4 Diagrammatic notation for QDPT

The diagrammatic notation for hole and particle states is the same in QDPT
as in nondegenerate PT. However, since summations over particle states
include the valence as well as the virtual states (using the arrangement
in Fig. 8.1), we also need a notation for spinorbitals that are restricted
to valence states. These are conventionally denoted by upward-pointing
double arrows (Sandars 1969). For example, in a case with three valence
electrons the model state Φuvw can be represented diagrammatically
by

u v w .

Additional notation is required if the Fermi vacuum is chosen to include all
or some of the valence orbitals.
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Components of the level-shift operator Ŵ (the QDPT analog of the en-
ergy) may be represented schematically by the diagram

|β〉〈β|Ŵ |α〉〈α| =

α

β

Ŵ (8.55)

where the heavy lines represent many-electron states (in this case, the model
states Φα and Φβ) rather than one-electron states. To avoid confusion be-
tween the generic Φα notation and the specific Φuvw notation, we designate
the many-electron basis states by |α〉 etc. for model states and |I〉 etc. for
Q̂-space states. Clearly, the corresponding matrix element Wβα is recov-
ered by placing this operator between the respective ket and bra states. It
will sometimes be convenient to identify this diagram just with the matrix
element Wβα instead of the full operator.

If the model states are |α〉 = |Φuvw〉 = û†v̂†ŵ†|0〉 and |β〉 = |Φxyz〉 =
|x̂†ŷ†ẑ†|0〉 then the operator can be represented schematically by the diagram

x̂†ŷ†ẑ†〈Φxyz|Ŵ |Φuvw〉ŵv̂û = 〈Φxyz|Ŵ |Φuvw〉{x̂†ŷ†ẑ†ŵv̂û} =

u

x

v

y

w

z

Ŵ .

(8.56)

Note that the creation and annihilation operator product is in normal order.
Again, it will sometimes be convenient to identify this diagram just with the
matrix element 〈Φxyz|Ŵ |Φuvw〉. Obviously, all the labels on the incoming
valence lines should be different from each other, and the same must apply to
the outgoing valence lines, otherwise the corresponding determinants would
describe null states. However, any labels on incoming valence lines may be
equal to labels on the outgoing lines.

Some valence lines in a diagram may pass through it without interaction,
as in

x̂†ŷ†ŵ†〈Φxy|Ŵ |Φuv〉ŵv̂û = 〈Φxy|Ŵ |Φuv〉{x̂†ŷ†ŵ†ŵv̂û} =

u

x

v

y

wŴ .

(8.57)
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Such noninteracting valence lines, called passive lines, participate in deter-
mining the identity of the initial and final states involved but do not affect
the matrix-element value. They are usually omitted from the diagram, with
the understanding that the diagram represents all allowed assignments of
valence labels to the omitted passive lines. For Ŵ diagrams all open lines
must be valence lines, with the number of outgoing lines equal to the number
of incoming lines.

Wave-operator diagrams are the QDPT analogs of wave-function diagrams
in nondegenerate PT. They can be represented schematically in the form

|I〉〈I|Ω|α〉〈α| = |I〉ΩIα〈α| =

α

I

Ω , (8.58)

where the top line designates a Q̂-space state and may represent a mix of
particle, hole and valence lines. Specifically, if nv is the number of entering
valence lines at the bottom of the diagram and ñv, ñp, ñh are the number of
open valence, particle and hole lines, respectively, at the top then preserva-
tion of the number of electrons requires that

ñv + ñp − ñh = nv . (8.59)

Usually wave-operator diagrams are summed over the outgoing Q̂-space
states |I〉, so that the diagram in (8.58) represents the perturbation correc-
tion |χα〉 to the model state |α〉,

|χα〉〈α| =
∑

I

|I〉ΩIα〈α| =

α

(I)

Ω =

α

Ω , (8.60)

where a label in parentheses (or no label) indicates a dummy (summation)
index. A specific matrix element ΩJα is obtained by placing the sum (8.60)
between the bra state 〈J | and the ket state |α〉. To take a specific example,
if |α〉 = |Φuvw〉 and |I〉 = |Φabcx

i 〉 = â†îb̂†ĉ†x̂†|0〉 then

∑
aibcx

〈Φabcx
i |Ω|Φuvw〉{â†îb̂†ĉ†x̂†ŵv̂û} =

u

(a) (i)

v

(b)

w

(c) (x)

Ω . (8.61)
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Here, too, the operator product is in normal order. As in the case of the Ŵ

diagrams, passive valence lines affect only the identity, not the value, of the
matrix element and are usually omitted from the diagrams. The number
of omitted passive lines is Nv − nv, where Nv is the number of valence
electrons. Outgoing open lines (other than passive lines) in wave-operator
diagrams may include valence lines in addition to general particle lines. As
will be shown later, such lines have their origin in the secondary term of the
generalized Bloch equation (8.2).

All QDPT diagrams can be classified according to the number of incom-
ing valence lines nv. For a problem involving Nv valence electrons, the
number of incoming valence lines is limited to the range nv = 0, 1, . . . , Nv;
nv = 0 represents the diagrams of nondegenerate PT, all of which are
included among the QDPT diagrams. It is understood that the balance
of Nv − nv valence lines in each diagram is made up of implied passive
lines. In particular, in the case of the level-shift diagrams the nondegen-
erate PT (nv = 0) energy diagrams contribute equally to all diagonal ele-
ments of the effective Hamiltonian (and do not contribute to off-diagonal
elements).

The definition of linked and unlinked diagrams needs to be broadened in
QDPT. A disconnected part of a diagram is considered unlinked if it has
no open lines other than valence lines. In other words, open valence lines
are disregarded in determining the linked or unlinked status of a diagram.
Using this broadened definition, the cancellation of unlinked diagrams holds
in QDPT, assuming a complete model space, just as in nondegenerate PT.
This linked-diagram theorem for QDPT was first proved by Brandow (1966,
1967); see also Sandars (1969) and Lindgren (1974).

8.5 Schematic representation of the generalized Bloch
equation

The explicit form of the generalized Bloch equation (8.39) can be represented
schematically by the two diagram equations

α

I

Ω(1) =

α

I

V̂

R̂I
α (8.62)
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and

α

I

Ω(n) =

α

Ω(n−1)

(J)

I

V̂
R̂I

α

−
n−1∑
m=1

α

Ω(m)

Ŵ (n−m)

(β)

I
R̂I

α

(n ≥ 2) . (8.63)

Again, the parentheses, around J and β, indicate that these are dummy
(summation) indices. The Ŵ equations (8.40) can be represented schemat-
ically in the form

α

β

Ŵ (1) =
α

β

V̂ ,

α

β

Ŵ (n) =

α

Ω(n−1)

(I)

β

V̂

(n ≥ 2) . (8.64)

Considering (8.62) for Ω(1) first, we can see a problem in using the rule
for the determination of energy denominators in the resolvent R̂I

α. In non-
degenerate PT the denominator was determined as the sum of the orbital
energies of the hole lines crossed by the resolvent line minus the sum of the
orbital energies of the particle lines crossed by it. This rule resulted in a
denominator value D0I = E

(0)
0 − E

(0)
I , i.e. the negative of the zero-order

energy of state I relative to the Fermi vacuum. In the current case we need
the denominator DαI = E

(0)
α − E

(0)
I , i.e. the negative of the zero-order en-

ergy of state I relative to the model state α. This value can be obtained
from the above rule if we fold the valence lines for state α upwards and treat
them as hole lines, as in the following schematic diagram:

|I〉Ω(1)
Iα 〈α| =

αI

V̂

R̂I
α =

|I〉〈I|V̂ |α〉〈α|
E

(0)
α − E

(0)
I

= |I〉 VIα

DαI
〈α| . (8.65)

The circle around the double arrow is intended to indicate that the folded
valence lines represent particle states rather than hole states. Similarly,
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for the principal term (Ω(n))1 in the Ω(n) equation, the first term on the
right-hand side of (8.63), we have

|I〉
(
Ω(n)

Iα

)
1
〈α| =

α

Ω(n−1)

(J)

I

V̂
R̂I

α

=
∑
J

|I〉 VIJ

DαI
Ω(n−1)

Jα 〈α| . (8.66)

Obviously, the folded valence lines of model state α will be crossed by any
resolvent line within the Ω(n−1) block (including its own top resolvent R̂J

α)
and will contribute to the corresponding denominators. However, in the
conventional drawing of QDPT diagrams the incoming valence lines are left
unfolded; it is understood that these lines are to be folded only for the
purpose of determining the appropriate denominators, not for the purpose
of contracting successive operators in accordance with Wick’s theorem. For
the purpose of the latter contractions the valence lines continue to act as
particle lines rather than hole lines. The term “folded diagrams” is applied
instead to diagrams representing the secondary term in the Bloch equation
for the wave operator, as will be shown next.

The secondary term (Ω(n))2 in the wave-operator equation (8.63) repre-
sents new challenges specific to QDPT. In nondegenerate PT the Ŵ (n−m)

operator just equals the number E(n−m), and its diagrammatic representa-
tion has no open lines. Therefore this energy factor is disconnected from
the wave-operator factor and can be represented as an insertion that cancels
the unlinked diagrams in the principal term. In the QDPT case there will
still be diagrams in which the Ŵ (n−m) operator is disconnected and there-
fore unlinked, and these contributions will still cancel the unlinked diagrams
in the principal term (using the broadened definition of unlinked diagrams
in QDPT; see Section 8.4). But the terms in which the Ŵ (n−m) operator
is connected to the Ω(m) operator survive and give rise to a new type of
diagram specific to QDPT, called a folded diagram.

Looking at the schematic representation of the secondary term in (8.63),
on the one hand we see that the resolvent that appears above the Ω(m) block
in that diagram refers not to the model states β that enter that block but to
the model state α that enters the Ŵ (n−m) block below it. On the other hand,
any resolvent lines within the Ω(m) block (including its top resolvent R̂I

β)
must refer to the β state that enters that block. The correct denominators
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can be recovered, employing the usual rule, by folding the valence lines
connecting the two blocks, as well as the valence lines entering the Ŵ (n−m)

block, in the following way:

|I〉
(
Ω(n)

Iα

)
2
〈α| =

n−1∑
m=1

α

(β)

I

R̂I
α

Ω(m)

Ŵ (n−m)

= −|I〉
n−1∑
m=1

∑
β

Ω(m)
Iβ

W
(n−m)
βα

DαI
〈α|. (8.67)

However, conventionally this schematic diagram is drawn without folding
the incoming α lines,

α

(β)

I

R̂I
α

Ω(m)

Ŵ (n−m)

it being understood that the denominators are read from the fully folded di-
agram (8.67). The minus sign in the interpretation of the diagram originates
from the minus sign in front of the secondary term in the generalized Bloch
equation. In general, since the Ω(m) and Ŵ (n−m) blocks may contain folds
of their own (originating from lower-order factors inside them), we have a
−1 factor from each internal fold in a diagram.

Further points need to be made concerning the scope of the resolvent lines
within the Ω(m) and Ŵ (n−m) blocks. Obviously, the resolvent lines within
the Ω(m) block are to be interpreted relative to the model state β entering
it, ignoring the α state, as shown schematically by the thin horizontal lines
in (8.67). Resolvent lines within the Ŵ (n−m) block, however, are to be
interpreted relative to model state α, ignoring the descending part of the
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β folded line emerging from it, as also shown in (8.67). If any folded line is
crossed twice by a resolvent line (once as the folded line descends and again
as it ascends), its effects cancel in the corresponding denominator.

An alternative to the folding of the state lines in the QDPT diagrams was
introduced by Kucharski and Bartlett (1988) in the context of the Hose–
Kaldor approach for incomplete model spaces, to be described in Section 8.7;
it consists of the folding of the resolvent lines instead of the state lines.
This approach can be used just as well in the context of the diagrammatic
representation discussed here for complete model spaces. It can replace the
folding of the incoming valence lines in all diagrams as well as the folding
of the intermediate valence lines in the folded diagrams that represent the
renormalization terms. In this procedure a resolvent term such as RI

α is
represented by a directed line that crosses the state lines for state I from
left to right and then curves down to cross the state lines for state α from
right to left, as represented schematically by

α

I

.

The denominator DαI is obtained from the orbital energies of the state lines
crossed by the resolvent line according to

DαI =
→∑
i

εi −
→∑
a

εa −
←∑
u

εu , (8.68)

where the arrows on the summation signs limit the summations to the state
lines crossed by the folded resolvent line in the indicated direction. The
states crossed by the upper and lower parts of the resolvent line must be
Q̂- and P̂ -space states, respectively. Thus the lower part of the resolvent
line crosses valence lines only and, while the state crossed by the upper part
may include valence lines, the summation over particle labels in it has to be
restricted in many diagrams to prevent it from becoming a model state.

With this notation the schematic form (8.62), (8.63) of the generalized
Bloch equation can be rewritten as

α

I

Ω(1) =

α

I

V̂ (8.69)
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and

α

I

Ω(n) =

α

Ω(n−1)

(J)

I

V̂

−
n−1∑
m=1

α

Ω(m)

Ŵ (n−m)

(β)

I

(n ≥ 2) . (8.70)

Note that the leading resolvents within the Ω(n−1) and Ω(m) blocks in (8.70)
are represented by lines that fold down to cross the model states α and β,
respectively. This notation is particularly effective in describing the renor-
malization terms without resort to folded state lines.

8.6 Level-shift and wave-operator diagrams

8.6.1 Zero and first order

The zero-order part of the effective Hamiltonian Ĥeff is just the zero-order
Hamiltonian Ĥ0, which is diagonal in the model functions {α} and the
orthogonal-space functions {I},

〈β|Ĥ0|α〉 = δβαE(0)
α , 〈J |Ĥ0|I〉 = δJIE

(0)
I , 〈I|Ĥ0|α〉 = 0 . (8.71)

The zero-order energies of these functions are equal to the sum of the orbital
energies of the one-particle states they contain:

E(0)(Φuv...) = E0 + εu + εv + · · · ,

E(0)(Φab...
ij... ) = E0 + εa + εb + · · · − εi − εj − · · · ,

(8.72)

where
E0 =

∑
i

εi (8.73)

is the zero-order energy of the Fermi-vacuum state.
The 〈0|V̂ |0〉 term in the effective Hamiltonian (8.52) is given by the first-

order energy diagram (5.6) for the Fermi-vacuum state. The modified first-
order level-shift operator Ŵ ′(1) is given by the ASG diagrams

u

w

v

x
+

u

w
× , (8.74)

since the only open lines allowed in Ŵ diagrams are valence lines. The sec-
ond of these diagrams is the non-HF contribution, which vanishes if canonical
HF spinorbitals of the Fermi-vacuum state are used. No resolvents are in-
volved in these diagrams.
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In all QDPT diagrams it is to be understood that additional passive va-
lence lines are implied that make the total number of incoming valence lines
equal to the number of valence electrons. However, diagrams in which the
number of incoming valence lines exceeds the number of valence electrons
are to be ignored. Specifically, the first diagram in (8.74), whose value is
〈wx‖uv〉{ŵ†x̂†v̂û}, provides a contribution 〈wx‖uv〉 to the matrix elements
〈Φwxyz...|Ŵ (1)|Φuvyz...〉, including those cases in which one or both of the
incoming line labels u, v are equal to the outgoing line labels w, x. The sec-
ond diagram in (8.74), whose value is 〈w|f̂o|u〉{ŵ†û}, provides a contribution
〈w|f̂o|u〉 to the matrix elements 〈Φwxy...|Ŵ (1)|Φuxy...〉, not including the case
u = w (because of the off-diagonal nature of the one-electron perturbation,
subsection 4.4.6).

The first-order wave operator is given by the corresponding nondegenerate
PT diagrams (5.15), (5.16), plus the ASG diagrams

u

(a)

v

(b)
+

u

(b) (a) (i)
+

u

(a)
× . (8.75)

Again, the last of these is the non-HF contribution.
Because summations over particle labels include valence label values, it is

important to restrict the summations over the outgoing particle labels in the
first and third of these diagrams to prevent the upper state from becoming
a model state. Thus labels a and b in the first diagram cannot be allowed
to take on valence values at the same time, while the summation over a in
the third diagram must be over virtual labels only.

The nondegenerate PT diagram (5.15) provides a contribution

1
4

∑
abij

〈ab‖ij〉
εab
ij

{â†îb̂†ĵ} =
1
4

∑
abij

〈ab‖ij〉
εab
ij

|Φabxy...
ij 〉〈Φxy...|

to Ω(1), generating a first-order correction for the |Φxy...〉 model states for
all x �= y �= · · · , where x, y, . . . label an appropriate number of passive lines.
Similarly, the diagram (5.16) provides a contribution

∑
ai

〈a|f̂ |i〉
εa
i

{â†î} =
∑
ai

〈a|f̂ |i〉
εa
i

|Φaxy...
i 〉〈Φxy...|

to the same first-order correction.
The first diagram in (8.75) provides a contribution

1
2

∑
ab

〈ab‖uv〉
εab
uv

{â†b̂†v̂û} =
1
2

∑
ab

〈ab‖uv〉
εab
uv

|Φabxy...〉〈Φuvxy...|
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to Ω(1) (terms in which both a and b take on valence values are excluded),
generating a first-order correction for the model state |Φuvxy...〉. The second
diagram in (8.75) provides a contribution

1
2

∑
abi

〈ba‖ui〉
εab
iu

{â†îb̂†û} =
1
2

∑
abi

〈ba‖ui〉
εab
iu

|Φabxy...
i 〉〈Φuxy...|

to Ω(1), generating a first-order correction for the |Φuxy...〉 model state, and
the third diagram provides a contribution

∑
a

〈a|f̂o|u〉
εa
u

{â†û} =
∑

a

〈a|f̂o|u〉
εa
u

|Φaxy...〉〈Φuxy...|

(in which the summation over a is restricted to virtual label values) to the
same first-order correction.

8.6.2 Second-order level-shift operator

The matrix element of the second-order level-shift operator is given by
(8.41). It can be expressed schematically in the folded-resolvent-line no-
tation:

α

β

Ŵ (2) =

α

(I)

β
V̂

V̂

. (8.76)

As in nondegenerate PT, a convenient way to generate higher-order QDPT
ASG diagrams is to begin with Hugenholtz diagrams. This approach makes
it easy to avoid redundant equivalent diagrams. The QDPT Hugenholtz
diagrams for the second-order level-shift operator are given in Fig. 8.2. The
first and second rows in this figure represent the canonical HF and non-HF
diagrams, respectively.

The relevant ASG diagrams are shown in Fig. 8.3. As in other cases,
the corresponding nondegenerate PT diagrams (5.9), (5.10), which are not
shown here, are also to be included. Together, all these diagrams represent
(8.41). In the diagrams in Fig. 8.3 without intermediate hole lines (dia-
grams 3, 6, 10, 11, 14), it is necessary to restrict the summations over the
intermediate-particle labels so that not all these labels take on valence label
values at the same time (because of the Q̂ projector in the resolvent).
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Fig. 8.2. Quasidegenerate PT Hugenholtz diagrams for the second-order level-shift
operator.
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Fig. 8.3. Quasidegenerate PT ASG diagrams for the second-order level-shift op-
erator.
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For examples of the folded-resolvent-line notation for these diagrams we
consider diagrams 1 and 2 of Fig. 8.3:

u

(a)

v

(b)(i)
1

=
1
2

∑
iab

〈vi‖ab〉〈ab‖ui〉
εab
ui

{v̂†û} ,

u

(i)

v

(a)(j)

2

=

u

(i)

v

(a)(j)

= −1
2

∑
ija

〈ij‖ua〉〈va‖ij〉
εav
ij

{v̂†û} .

The shortened resolvent line in the second form of diagram 2 reflects the fact
that lines crossed twice by the folded resolvent line make no net contribution
to the corresponding denominator. Obviously the same denominators are
obtained with conventional resolvents and folded incoming valence lines.
The weight factor is due to the presence of one pair of equivalent internal
lines in each diagram.

8.6.3 Second-order wave operator

The matrix elements of the second-order wave operator are given by (8.42)
and are represented schematically in the folded-resolvent-line notation by

α

I

Ω(2) =

α

(J)

I

V̂

V̂

−

α

(β)

I

V̂

V̂

. (8.77)

The corresponding ASG diagrams consist of the nondegenerate PT di-
agrams in Figs. 5.3 and 5.4 plus the diagrams in Figs. 8.4 and 8.5. This
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Fig. 8.4. Quasidegenerate PT ASG HF diagrams for the second-order wave
operator.

set of diagrams is the first that contains folded diagrams (diagrams 28–30
in Fig. 8.4 and 58–61 in Fig. 8.5), representing the secondary contribution
in (8.63). The diagrams in each of these figures are arranged in order of
increasing number of incoming valence lines (separately for principal-term
and folded diagrams). Diagrams 11, 12, 20–22, 25–27, 39-42, 45, 46, 51–57
are disconnected but not unlinked. The folded diagrams 28, 30, 60 are the
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Fig. 8.5. Quasidegenerate PT ASG non-HF diagrams for the second-order wave
operator.

first examples of wave-operator diagrams that contain outgoing valence lines
(originating in the Ŵ part of the secondary term). The summations over
particle labels in many of these diagrams must be restricted to comply with
the Q̂ projectors in the resolvents.

No disconnected folded diagrams have been included in Figs. 8.4 and 8.5,
because all such diagrams for the second-order wave operator are unlinked
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and cancel against certain contributions to disconnected principal-term dia-
grams. In fact, folding any of the disconnected principal-term diagrams for
the second-order wave operator produces “folded” diagrams in which there
are no folded lines that connect the Ŵ part in the second term of the second
equation in (8.39) with the rest of the diagram. The result is best described
in the folded-resolvent-line notation.

An example of the folding process for these disconnected diagrams and of
the relevant cancellations is provided by the folding of diagram 25 of Fig. 8.4:

fold−−→

Ŵ (1)

=

u

(b)(i) (a)

v

(x)

w

(y)

= −1
2

∑
iabxy

〈ab‖iu〉〈xy‖vw〉
εabxy
iuvwεab

iu

{â†îb̂†x̂†ŷ†ŵv̂û} .

Comparing this diagram with the disconnected principal-term diagram 26
of Fig. 8.4,

u

(b)(i) (a)

v

(c)

w

(d)

=
1
2

∑
iabcd

〈cd‖vw〉〈ab‖iu〉
εabcd
iuvwεab

iu

{â†îb̂†ĉ†d̂†ŵv̂û} ,

it is seen that the whole of the unlinked folded diagram cancels with those
terms of the disconnected principal-term diagram in which c and d take on
valence-label values (i.e. c = x, d = y). The canceled terms in the latter
diagram represent unlinked contributions to that diagram.

Such cancellations occur between all unlinked folded diagrams and all
unlinked contributions to the disconnected principal-term diagrams 21, 26,
27, 40, 46, 52, 54–57. The other disconnected diagrams have no unlinked
contributions, either because both their disconnected parts contain hole lines
(diagrams 11, 12, 22, 41, 42) or because the restriction that the intermediate
state must not be a model state eliminates potential unlinked contributions
to them (diagrams 20, 25, 39, 45, 51, 53). The result is that no unlinked
diagrams or unlinked terms in disconnected diagrams survive. Thus the
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summations over final states in the disconnected diagrams must be restricted
to reflect that result.

As an example of the folded-resolvent-line notation for linked folded dia-
grams we consider diagram 28 of Fig. 8.4:

u(x)

(b)
(i) (a)

v

(w)

=

u

(x)

(b)(i) (a)

v

(w)

= −1
2

∑
iabwx

〈ab‖ix〉〈xw‖uv〉
εabw
iuv εab

ix

{â†îb̂†ŵ†v̂û} .

No restriction over the a and b summations is needed here because of the
presence of the hole line i.

The algebraic interpretation of QDPT diagrams, including weight factors,
phase factors and more complex types of folded diagram, are discussed in
detail in the next two subsections.

8.6.4 Weight factors and phases

When computing a specific matrix element of Ŵ or Ω, the free lines have
fixed labels and so may be ignored for the purpose of counting equivalent
lines. Thus, in these cases the weight factor is 1

2 for each pair of equivalent
internal lines. However, when summing over the orthogonal-space states in
wave-operator diagrams to obtain the perturbative corrections to the model
states, as in

|χ(n)
α 〉 =

∑
I

|I〉Ω(n)
Iα , (8.78)

open lines at the top of the Ω diagrams are included in the calculation of
the weight factors. Each pair of open lines of the same type (hole, particle
or valence) connected to the same vertex contributes a factor 1

2 . All open
lines in Ŵ diagrams and at the bottom of Ω diagrams are always valence
lines that specify a model state and are never summed over; therefore they
do not contribute to the weight factors.

The phase factors in QDPT diagrams depend on the order of the creation
and annihilation operators in the operator product associated with the di-
agrams. The case of Ŵ diagrams is relatively simple, since all operators



212 Open-shell and quasidegenerate perturbation theory

are valence-state operators. Each pair of open-line labels on the same con-
tinuous path in the diagram is represented by a creation operator and an
annihilation operator in corresponding positions (counting inwards from the
two ends) in the operator product. With this ordering of the operators, the
phase factor is given by the usual PT rule as (−1)h−l, ignoring the open
lines. The identity of the corresponding Ŵ matrix element is determined
from the operator product based on the constructions

|Φuvw...〉 = û†v̂†ŵ† · · · |0〉 , 〈Φxyz...| = 〈0| · · · ẑŷx̂ . (8.79)

Indices representing the appropriate number of passive lines are added in
corresponding positions. The same diagram value is assigned to matrix
elements with all allowed values of the passive-line indices, i.e. all values
which cause no duplication of indices in either the bra or ket states.

As examples, we consider diagrams 4 and 5 in Fig. 8.3, shown first in the
folded-resolvent-line notation:

u

w

v

x
(a)(i) =

∑
ia

〈wi‖ua〉〈ax‖iv〉
εax
iv

{ŵ†x̂†v̂û} , (8.80)

u

(i)

w

v

(j)

x

=
1
2

∑
ij

〈ij‖uv〉〈wx‖ij〉
εwx
ij

{ŵ†x̂†v̂û} . (8.81)

Both diagrams contribute to the matrix element 〈Φwxyz...|Ŵ (2)|Φuvyz...〉,
where y, z, . . . label passive lines. In the first diagram we have one hole
line and one loop, giving a phase factor +1, and no equivalent internal lines.
In the second we have two hole lines and no loops, again giving a phase factor
+1, and one pair of equivalent internal lines, giving a weight 1

2 . Alterna-
tively, the denominators can be derived by folding the incoming valence lines:

u
w

vx

(i) (a)

u

(i)

w v

(j)

x

Alternative assignments of operator sequences and phase factors can be
based on the folded form of these diagrams. Taking the first of the above
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diagrams as an example, we can connect pairs of incoming and outgoing
valence lines whose labels occupy corresponding positions in the initial and
final model states with dotted lines, forming quasiloops, and pair the corre-
sponding creation and annihilation operators:

u
w

v

x

(i) (a)
=

∑
ia

〈wi‖ua〉〈ax‖iv〉
εax
iv

{(ŵ†(x̂†v̂)û)} .

In this case we have included these quasiloops in the loop count and have
counted the folded lines as holes (just as for the denominator determination),
so this diagram now has three loops and three hole lines, and a phase factor
+1, just as before. The alternative quasiloop connection,

u
w

v

x

(i) (a)
= −

∑
ia

〈wi‖ua〉〈ax‖iv〉
εax
iv

{(ŵ†(x̂†û)v̂)},

has two loops and a phase factor −1 and is equal in value to the previous form
because of the odd permutation of the operators. This form of the diagram
can be considered as contributing to 〈Φwxyz...|Ŵ |Φvuyz...〉, which is consistent
with the previous assignment because of the odd permutation of the indices
in the ket side of the matrix element. As in the case of nondegenerate PT
diagrams, this analysis shows that the choice of quasiloop connections does
not affect diagram values and justifies the omission of these connections from
the diagrams.

The folding of the incoming valence lines could also have been done from
the bottom of the diagram, as in

u

w

v

x

(i) (a) .
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Since the resolvent line crosses the folded u line twice, the denominator is
unaffected.

To specify the phase of an orthogonal-space state we define it by

|Φab...efg...
ij...m 〉 = (â†î)(b̂†ĵ) · · · (ê†m̂)f̂ †ĝ† · · · |0〉 , (8.82)

where the superscript indices may represent either particle or valence labels.
The labels in an orthogonal-space state fall into two classes: there are zero
or more pairs, each pair consisting of a particle (or valence) label vertically
above a hole label in the state specification, such as (a, i), (b, j), (e, m) in
(8.82), and there are unpaired (excess) particle (or valence) labels, such
as f , g. In a wave-operator matrix element ΩIα each unpaired particle or
valence label in the final state I is considered as paired with a valence label
in the initial (model) state α if the two are in corresponding positions in
the unpaired final-state labels and the initial-state labels (ignoring all the
paired labels). Thus, in the matrix element 〈Φab...efg...

ij...m |Ω|Φuv...〉, f is paired
with u and g is paired with v. Note that the operator product in (8.82) is in
normal order and that creation and annihilation operator pairs such as (â†î)
may be moved together freely across any other operators in the sequence
without affecting the resulting function or the normal order.

In determining the phase factor for a wave-operator diagram, the sim-
plest approach is to place paired labels on the same continuous path in the
diagram. Each open hole line is then connected by a dotted line with its
paired open particle line, creating a quasiloop, and the usual (−1)h−l rule
for the phase factor is applied. As examples we consider diagrams 8 and 22
of Fig. 8.4,

u

(a)
(c)(j)

(b)
(k)

(i)

= −1
4

∑
abcijk

〈kc‖ij〉〈ab‖uk〉
εabc
uijε

ab
uk

{(b̂†î)(ĉ†ĵ)(â†û)} ,

u

(a)

v

(c)

(b) (i) (j)(d)

=
1
4

∑
abcdij

〈ab‖ui〉〈cd‖vj〉
εabcd
uvijε

cd
vj

{(b̂†î)(d̂†ĵ)(â†(ĉ†v̂)û)} ,

which contribute to 〈Φbcax...
ij |Ω|Φux...〉 and 〈Φbdacx...

ij |Ω|Φuvx...〉, respectively,
where x, . . . label passive lines. Each diagram has two pairs of equivalent
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open lines, contributing a weight factor 1
4 . In the first diagram we have two

loops and three hole lines, hence the phase factor −1. The second diagram
has two loops and two hole lines, and a phase factor of +1.

Alternatively, we can fold the incoming valence lines and connect all paired
indices with dotted lines, counting the folded incoming valence lines as hole
lines for the purpose of phase-factor determination as we have previously
done for level-shift diagrams; thus

u
(a)

(c)(j)
(b)

(k)

(i)
= −1

4

∑
abcijk

〈kc‖ij〉〈ab‖uk〉
εabc
uijε

ab
uk

{(b̂†î)(ĉ†ĵ)(â†û)},

or, using a different pairing scheme,

u
(a)

(c)(j)
(b)

(k)

(i)
= −1

4

∑
abcijk

〈kc‖ij〉〈ab‖uk〉
εabc
uijε

ab
uk

{(ĉ†î)(â†ĵ)(b̂†û)},

which contribute to 〈Φbcax...
ij |Ω|Φux...〉 and 〈Φcabx...

ij |Ω|Φux...〉, respectively.
These two forms now have three and one loops, respectively, and both have
four hole lines, giving a phase factor −1 in both cases, corresponding to even
permutations of the creation and annihilation operators and of the super-
script indices in the bra state between the two forms. Normal order of the
operator product is maintained as long as the valence annihilation operators
are placed at the end of the operator string.

8.6.5 Folded diagrams

Folded diagrams, which represent the secondary term in the generalized
Bloch equation, occur for both Ω and Ŵ diagrams; the Ŵ diagrams inherit
their folds from their Ω component, (8.24) or (8.40). An additional phase
factor −1 is required for each fold. The number of folds is not determined
by the number of internal folded lines but by the number of nested sec-
ondary terms represented in the diagram. Repeated secondary terms, and
thus multiple folds, arise when the Ω(m)

Iβ factor and/or the W
(n−m)
βα factor

contributing to the secondary term in (8.39) contain lower-order secondary-
term contributions of their own. Thus, replacing the Ω(m) factor in (8.67)
by its own secondary term produces the doubly folded diagram shown here
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schematically in its fully folded form:

(β)
(γ)

I
α

R̂I
α

R̂I
β

Ω(l)

Ŵ (m−l)

Ŵ (n−m)

(Ω(m))2

=
∑
ml

∑
βγ

|I〉Ω(l)
Iγ

W
(m−l)
γβ W

(n−m)
βα

DαIDβI
〈α| . (8.83)

This type of doubly folded diagram first occurs in the third-order wave
operator and the fourth-order level-shift operator diagrams.

Similarly, replacing the Ŵ (n−m) = P̂ V̂ Q̂Ω(n−m−1) factor in (8.67) by
its own secondary term produces the doubly folded diagram shown here
schematically in its fully folded form:

(γ)
(β)

I

(J) α

R̂I
α

R̂J
α

Ω(m)

Ω(n−m−l−1)

Ŵ (l)

V̂

(Ω(n−m−1))2

=
∑
ml

∑
Jβγ

|I〉Ω(m)
Iβ

VβJΩ(n−m−l−1)
Jγ W

(l)
γα

DαIDαJ
〈α| . (8.84)

This type of doubly folded diagram first occurs in the fourth-order wave
operator and the fifth-order level-shift operator diagrams.
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The folded-resolvent-line notation is particularly effective in representing
all kinds of folded diagrams. We have seen its application to an Ω(2) singly
folded diagram in subsection 8.6.3. The doubly folded schematic diagrams
of (8.83), (8.84) take the following forms in this notation:

(β)

(γ)

I

α

R̂I
α

R̂I
β

Ω(l)

Ŵ (m−l)

Ŵ (n−m)

(
Ω(m)

)
2

and

(γ)

(β)
(J)

I

α

V̂

R̂I
α

R̂J
α

Ω(m)

Ω(n−m−l−1)

Ŵ (l) (
Ω(n−m−1)

)
2

An example of a singly folded diagram that illustrates some details of
the interpretation of such diagrams is provided by the following fourth-
order wave-operator diagram containing Ω(2) and Ŵ (2) components in the
expression −R̂I

αΩ(2)
Iβ W

(2)
βα . We shall first display it in the folded-resolvent-

line notation, in which the identity of the intermediate states at the various
level is more apparent:

u

(a) (b)

v

(x)
(i)

(j)

w

(c)

(y)×

I :

J :

β :

K :

α :

Ω(2)
Iβ

W
(2)
βα

R̂I
α

R̂I
β

R̂J
β

R̂K
α

The initial, final and intermediate states are identified on the left-hand side,
and the resolvents required are also indicated. Note that the y line is passive
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for the Ω(2) diagram while the u line is passive for the Ŵ (2) diagram. The
denominators generated by the various resolvents are:

DIα = E(0)
α − E

(0)
I = εaby

uvw ,

DIβ = E
(0)
β − E

(0)
I = εab

ux ,

DJβ = E
(0)
β − E

(0)
J = εab

uj ,

DKα = E(0)
α − E

(0)
K = εxc

iw .

It is easily seen that these denominators are correctly recovered from the
fully folded form of the diagram:

u (a) (b)

v

(x)
(i)

(j)

w

(c)

(y)

×

Ω(2)
Iβ

W
(2)
βα

R̂I
β

R̂I
α

R̂J
β

R̂K
α

The x line must come out of the top of the Ŵ (2) section rather than con-
necting its two end vertices with a straight line and the internal resolvent
RK

α within the Ŵ (2) section crosses the ascending part of the x line but not
the descending part nor any other line on the left-hand side of the diagram.
The value of this diagram is given by

−1
2

∑
ijxabcy

〈ab‖uj〉〈j|f̂ |x〉〈iy‖vc〉〈xc‖iw〉
εaby
uvwεab

uxεab
ujε

xc
iw

{â†b̂†ŷ†ŵv̂û} .

The factor 1
2 is due to the pair of equivalent lines a, b. There are two hole lines

and no loops. The negative sign is due to the single internal fold. Open-
line labels on the same continuous path are associated with creation and
annihilation operators in corresponding positions in the operator sequence
(counting inwards from the two ends).
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As an example of a doubly folded diagram we consider a fourth-order
wave-operator diagram of the type described schematically in (8.84):

(i) (a) (b)

(z)

(w)

(c) (d)

(x) (y)

(u) (v)

Ω(1)
Iβ

W
(1)
γα

Ω(1)
Jγ

(Ω(2)
Jα)2

I :

β :

J :

γ :

α :

R̂J
α

R̂I
α

R̂I
β

R̂J
γ

The many-electron states involved, corresponding to the designations in the
schematic diagram (8.84), are identified on the left-hand side of the diagram.
Specifically, these states are |I〉 = |Φabw

i 〉, |β〉 = |Φzw〉, |J〉 = |Φcd〉, |γ〉 =
|Φxy〉, |α〉 = |Φuv〉. The upper parts of resolvent lines may not cross model
states, so the labels c and d cannot both take valence index values at the same
time. Each intermediate model state (β and γ in this diagram) corresponds
to a fold and is crossed only by the lower parts of the folded resolvent lines.
The fully folded form is

(i) (a) (b) (c)

(z)

(d)

(w)
v

u

(x)

(y)

Ω(1)
Iβ

W
(1)
γα

Ω(1)
Jγ (Ω(2)

Jα)2

R̂J
α

R̂I
α

R̂I
β

R̂J
γ
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The whole right-hand side of this diagram, including the top V̂ vertex,
represents W

(4)
βα , justifying the designation of the open line emerging from

that V̂ vertex as a valence line (w). This diagram has three equivalent pairs
(a, b), (c, d), (x, y), one hole line, one quasiloop involving the lines labeled
a, i and two internal folds. Its value is given by

1
8

∑
iwxyzabcd

〈ab‖iz〉〈zw‖cd〉〈cd‖xy〉〈xy‖uv〉
εabw
iuv εab

iz εcd
uvε

xy
cd

{â†îb̂†ŵ†v̂û} .

Finally, we consider a fifth-order level-shift-operator diagram obtained by
adding an interaction vertex on top of the previous wave-operator diagram:

(i) (a) (b)

t

(c)

(z)

(d)

w

v
u

(x)

(y)

Ω(1)
Iβ

W
(1)
γα

Ω(1)
Jγ (Ω(2)

2 )Jα

R̂J
α

R̂I
α

R̂I
β

R̂J
γ

=
1
8

∑
ixyzabcd

〈it‖ab〉〈ab‖iz〉〈zw‖cd〉〈cd‖xy〉〈xy‖uv〉
εabw
iuv εab

iz εcd
uvε

xy
cd

{t̂†ŵ†v̂û} .

It provides a contribution to the matrix elements 〈Φtw...|Ŵ (5)|Φuv...〉.

8.6.6 Third-order level-shift operator

The number of distinct diagrams in QDPT grows very rapidly with the order
of the treatment, making high-order calculations difficult. We shall restrict
ourselves here to discussing the generation of third-order level-shift-operator
diagrams. We shall consider principal-term diagrams (those without internal
folds) and folded diagrams separately.

For the principal-term diagrams it is easiest to follow a similar procedure
to that used for the second-order level-shift diagrams and begin with the
Hugenholtz diagrams. We shall classify the diagrams according to the num-
ber of open valence lines that enter and leave each of the three vertices. The
notation (ijk/lmn) will be used to describe a class of diagrams with i, j and
k open valence lines entering the first, second and third vertices, respectively
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Table 8.1. Representative classes, numbers of distinct linked ASG diagrams
in each class and set and total number of principal-term diagrams for the

third-order level-shift operator

Diagrams in class Diagrams in setValence Representative Classes
electrons classes in set HF non-HF HF non-HF

0 (000/000) 1 3 11 3 11

1 (001/100) 6 2 7 12 42
(001/001) 3 2 4 6 12

2 (002/200) 6 1 1 6 6
(002/110) 6 1 3 6 18
(002/101) 12 1 2 12 24
(011/110) 6 2 3 12 18
(011/011) 3 1 2 3 6

3 (012/210) 6 1 0 6 0
(012/201) 6 1 1 6 6
(012/111) 12 1 1 12 12
(012/021) 6 0 1 0 6
(111/111) 1 2 0 2 0

4 (022/211) 6 1 0 6 0
(112/211) 6 1 0 6 0

Folded 10 20

Total 108 181

(counting downwards from the top vertex) and l, m and n open valence lines
leaving these vertices, respectively. Obviously i + j + k = l + m + n. The
closed-shell third-order energy diagrams of Figs. 5.1 and 5.2 correspond to
the class (000/000) and are included in the expansions for the diagonal ele-
ments of the level-shift operator in the open-shell case.

The various classes of diagrams can be organized in sets. The differ-
ent classes in a set all have the same number of diagrams and can be
obtained from each other by permutation of the three vertices and/or by
reversing all arrows (which includes converting all entering open valence
lines to leaving open valence lines and vice versa). For example, the 12
classes (002/101), (002/011), (020/110), (020/011), (200/110), (200/101),
(101/002), (011/002), (110/020), (011/020), (110/200) and (101/200) form
one such set. We shall list the linked diagrams for just one representative
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class from each set. Table 8.1 lists the representative classes, the number
of distinct diagrams in each class and set and the total number of diagrams
of HF and non-HF type. Clearly, the total number, 289, of third-order di-
agrams (including 30 folded diagrams, as shown later), in comparison with
just 14 diagrams for the closed-shell case, demonstrates the difficulty of car-
rying out higher-order QDPT calculations.

The principal-term Hugenholtz diagrams for the representative classes
are shown in Fig. 8.6 (apart from the closed-shell class (000/000)). No dis-
connected diagrams are included since such diagrams would be unlinked.
Obtaining all other Hugenholtz diagrams from the representative classes,
converting them to ASG diagrams and giving them an algebraic interpre-
tation are straightforward. As an example we show the generation of a
Hugenholtz diagram of the class (110/200) from the corresponding diagram
in the representative class (002/101) by permutation of vertices (1 → 2 →
3 → 1) and reversal of arrows, including the interconversion of entering and
leaving open valence lines, followed by its conversion to an ASG diagram:

(002/101)

→

(200/110)

→

(110/200)

→
u

w

(i)

v

(a)
(j) (b)

x

This ASG diagram represents the contribution

− 1
2

∑
ijab

′ 〈wx‖ua〉〈ij‖vb〉〈ab‖ij〉
εa
vε

ab
ij

{ŵ†x̂†v̂û}

= −1
2

∑
ijab

′ 〈wx‖ua〉〈ij‖vb〉〈ab‖ij〉
εa
vε

ab
ij

|Φwx...〉〈Φuv...|

to Ŵ (3), contributing to the matrix elements 〈Φwx...|Ŵ (3)|Φuv...〉. The prime
over the summation sign indicates that the sum over a exclude valence-index
values in order to avoid intermediate model states. The denominator reflects
the folding of the incoming valence lines u and v. The weight factor reflects
the equivalence of the two hole lines i and j. The phase factor is due to the
presence of two hole lines and one loop. The generation of the rest of the
normal third-order diagrams and their interpretation are left as an exercise
for the reader.
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(001/100)

× ×
×

×
×
×

×
×

×
×
×

(001/001)

×
×

×
×

×
×

(002/200)

×

(002/110)

×

× ×
×

(002/101)

× ×
×

(011/110)

×

×

×

×

(011/011)

× ×

(012/210) (012/201)

×

(012/111)

× ×

(012/021) (111/111) (022/211) (112/211)

Fig. 8.6. Quasidegenerate PT Hugenholtz diagrams for representative classes of
the principal term of the third-order level-shift operator.
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30f

×
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58b

×
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×
60a

×
60b

×
60c

×

×

60d
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×
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×
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×

61c

Fig. 8.7. Quasidegenerate PT ASG folded diagrams for the third-order level-shift
operator.

The folded third-order level-shift diagrams are best obtained by adding
an interaction vertex to the top of the folded second-order wave-operator
diagrams (diagrams 28–30 and 58–61 of Figs. 8.4 and 8.5) in all allowed
ways. To avoid generating equivalent diagrams, the Hugenholtz version
should be examined in each case. The resulting set of folded ASG diagrams is
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displayed in Fig. 8.7. The numbering of these diagrams identifies the folded
second-order wave-operator diagrams from which they have been generated.

As an example of how to interpret the folded diagrams we shall consider
diagram 28f, shown here in both conventional and folded-resolvent-line form:

u(y)

(i)w x

v

(z)
×

=

u v

(y)
(z)

(x) (w)

(i)

×

=
∑
iyz

〈i|f̂ |z〉〈xw‖yi〉〈yz‖uv〉
εwxz
iuv εwx

iy

{x̂†ŵ†v̂û} .

This diagram contributes to the matrix elements 〈Φxwt...|Ŵ (3)|Φuvt...〉, where
the indices beginning with t represent passive lines. The minus sign due to
the fold is canceled by the minus sign due to the presence of one hole line
(i) and no loops. There are no equivalent internal lines.

8.6.7 Third-order wave operator

Because of the proliferation of the number of diagrams with increasing order,
we shall not present actual diagrams for the third-order wave operator. Even
the number of skeletons is too large to present conveniently. Instead, we shall
just give a schematic description of the five different terms appearing in the
expression for this operator in (8.44). This expression contains one principal
term, three singly folded terms and one doubly folded term. Their schematic
form in the folded-resolvent-line notation is

α

I

Ω(3) =

α

(K)

(J)

I

V̂

V̂

V̂

−

α

(β)

(J)

I

V̂

V̂

V̂

−

α

(J)

(β)

I

V̂

V̂

V̂

−

α

(β)

(J)

I

V̂

V̂

V̂

+

α

(β)

(γ)

I

V̂

V̂

V̂

(8.85)

It can be seen that the expression for Ω(3) contains all possible distri-
butions of Q̂-space and model-space states for the two internal state lines.
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Furthermore, all possible arrangements of the three folded resolvent lines
are included in which the upper part crosses a Q̂-space state and the lower
part crosses a model state, the resolvent lines do not cross each other, no
two resolvent lines cross the same pair of states and each state is crossed
by at least one resolvent line. An outer resolvent line that crosses the final
and initial states is always present. Note that the second and fourth terms
in (8.85) contain the same sequence of intermediate states but differ in the
states that are crossed by the middle resolvent line.

A compact notation for these schematic diagrams can be obtained using
sets of matched parentheses, paired according to the ordinary algebraic con-
vention, interspersed with state labels. The opening and closing parentheses
of each pair represent the upper and lower parts of the folded resolvent line,
respectively:

Ω(3)
Iα = (I(J(Kα))) − (I((Jβ)α)) − ((Iβ)(Jα)) − ((I(Jβ))α) + (((Iγ)β)α) .

(8.86)
Perturbation operators are implied between the state labels in such a way
that each Q̂-space-state label is immediately followed by a V̂ operator and
each model-state label is immediately preceded by such an operator, without
intervening parentheses. Summations over intermediate states are implied.

Using the conventional notation the same expression takes the following
form, in which we have folded the incoming model-state line labeled α in
each term in order to be able to show the scope of all resolvent lines:

α

I

Ω(3) =
α

(K)

(J)

I

V̂

V̂

V̂

− α

(β)
(J)

I

V̂

V̂

V̂

−
α

(β)

I V̂

V̂

V̂

(J)

−

α

(β)(J)

I
V̂

V̂

V̂

+

α

(β)

(γ)

I V̂

V̂

V̂

.

(8.87)
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Note the scope of the middle resolvent line in the third term (compare
(8.67)). The difference in the operator sequences in the second and fourth
terms is due to the fact that the second term represents the sum

∑
J R̂I

αVIJ

(Ω(2)
Jα)2, in which (Ω(2)

Jα)2 =
∑

β R̂J
α Ω(1)

JβW
(1)
βα , while the fourth term repre-

sents
∑

β R̂I
α(Ω(2)

Iβ )1W
(1)
βα (the subscripts 1 and 2 refer to the principal and

secondary terms, respectively, in (8.39)).

8.7 Incomplete model space

8.7.1 The Hose–Kaldor approach

A formalism for the use of incomplete model spaces in QDPT was introduced
by Hose and Kaldor (1979, 1980, 1982). Their approach uses different Fermi
vacuum states for the calculation of the different matrix elements of the
wave and level-shift operators. The incoming model state is used as the
Fermi vacuum for all matrix elements in which that state is the initial (ket)
state. Thus all elements in the same column of the matrices for the wave
and level-shift operators use the same Fermi vacuum, but different columns
use different Fermi vacuums. A similar approach to multireference coupled-
cluster theory was formulated by Jeziorski and Monkhorst (1981).

When the Hose–Kaldor (HK) approach is applied to a complete model
space it generates the same results, order by order (but not diagram by
diagram), as the approach presented in the previous sections because it
solves the same generalized Bloch equation. However, because it can be
applied easily to incomplete model spaces, it can partly overcome the prob-
lems of intruder states and of model spaces that are too large for practical
applications. In such cases it results in incomplete cancellation of unlinked
diagrams, as will be shown in the following analysis, but the procedure is
nevertheless quite practical and has been used successfully for various ap-
plications (e.g. Kaldor 1984, Hose and Kaldor 1984, Kucharski and Bartlett
1988), although, like most QDPT applications, not beyond third order.
In presenting this formalism we shall use the diagrammatic approach of
Kucharski and Bartlett (1988), in which the folded-resolvent-line notation
was first introduced.

The one-electron states in the HK formalism are classified into core, va-
lence and virtual states, as in the previously described approach. However,
for each different Fermi vacuum used, the valence orbitals are classified as
valence holes (the valence states occupied in that particular Fermi vacuum)
and valence particles. For each such Fermi vacuum, the hole states consist
of the core states plus the valence hole states of that vacuum. Similarly, the
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...

}
Core

}
Holes (i, j, . . .)

...

... }
}

Valence holes
(u, v, . . .)

Valence particles
(x, y, . . .)

...

}
Virtual

}
Particles (a, b, . . .)

Fig. 8.8. Classification of one-electron states in the Hose–Kaldor approach.

particle states consist of the virtual states plus the valence particle states.
This classification is shown schematically in Fig. 8.8, but it should be re-
membered that the sequence of the valence states in this figure does not
reflect their energy order and that the classification of the valence states de-
pends on the model state used as the Fermi vacuum. In the diagrammatic
notation, valence states are distinguished by double arrows. In skeleton rep-
resentations a bar across the state line is used to indicate lines restricted to
valence states.

The selection of the model states is a major factor in determining the
convergence behavior of the perturbation series. As noted in Section 8.2, a
large energy gap between the model states on the one hand and all external
(Q̂-space) states on the other is desirable, because each denominator factor
in the various terms contributing to the level-shift and wave-operator matrix
elements represents an energy difference between a model state and an exter-
nal state. Small denominator factors increase the magnitude of high-order
contributions and retard (or even prevent) convergence.

8.7.2 The one-electron interaction

The cancellation between the ÛN and V̂ ′
N operators that simplifies the ex-

pression for the perturbation in nondegenerate MBPT, (3.176)–(3.183), can
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no longer be used in the same way in the HK formalism of quasidegenerate
PT. The reason for this lies in the different summation ranges in the defini-
tions of upq and v′pq in the latter case, owing to the varying definitions of the
Fermi vacuum for the different columns of the level-shift and wave-operator
matrices and to the difference between these Fermi-vacuum definitions and
the corresponding definition for the Fock operator.

The definition upq =
∑

i〈pi‖qi〉, (3.133), is part of the definition of the
Fock operator (3.130) and therefore the summation over i runs over the
occupied spinorbitals in the determinant used as the reference state for
that Fock operator, regardless of whether this determinant is an HF wave
function for any particular state. A typical choice for the reference de-
terminant is just the core state, i.e. the determinant consisting of all the
spinorbitals occupied in all the model states. However, in the definition
v′pq =

∑
i〈pi‖qi〉, given in (3.178), the summation over i is over the spinor-

bitals constituting the Fermi vacuum used for the definition of normal prod-
ucts for the current matrix element, which include the current valence hole
states.

The one-electron component of the normal-product perturbation operator
in the HK formalism is therefore given by the operator

ĜN = F̂ o
N + V̂ ′

N − ÛN =
∑
pq

gpq{p̂†q̂} , (8.88)

where

gpq = 〈p|ĝ|q〉 = fo
pq + v′pq − upq . (8.89)

More generally, if we do not require εp = fpp, we use f ′
pq = fpq − εpδpq =

hpq + upq − εpδpq and define

gpq = f ′
pq + v′pq − upq

= hpq − εpδpq +
∑

i

〈pi‖qi〉 . (8.90)

The last form in (8.90), in which the summation is over the hole states
of the current Fermi vacuum (core plus valence holes), is the most gen-
eral, being independent of the definition of the Fock operator and its re-
lationship to the orbital energies. Obviously the operators v̂′ and ĝ are
different for the different columns of the level-shift and wave-operator
matrices.
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If the core determinant is used for the definition of the Fock operator, the
difference between v′pq and upq is given by

v′pq − upq =
∑

u

〈pu‖qu〉 , (8.91)

the sum over u running over the valence hole states for the current Fermi
vacuum. In this case

gpq = fo
pq +

∑
u

〈pu‖qu〉 . (8.92)

In the diagrams we shall designate the Ĝ operator by the vertex ⊗ , it
being understood that the definition of the corresponding interaction varies
for the different columns of the level-shift and wave-operator matrices.

8.7.3 First-order diagrams

The zero-order energies for the various model states are given by the usual
formula,

∑
i εi; the scope of the summation, however, depends upon the

model state, reflecting the differences in the corresponding sets of hole states.
Thus the zero-order energy values, which enter the diagonal elements of the
effective Hamiltonian matrix Ĥeff, usually differ between model states.

Since the initial (ket) state in each matrix element serves as its own Fermi
vacuum in the HK formalism, the initial state in the generalized Bloch equa-
tions (8.39)–(8.44) is the current vacuum state, |α〉 = |0〉, and there are no
lines below the lowest vertex in the diagrams of this formalism. The diago-
nal elements of the level-shift operator are vacuum expectation values and
are represented by closed diagrams that are mostly similar to those of non-
degenerate MBPT. However, there are open valence lines at the top of all
diagrams for off-diagonal elements of the level-shift operator, reflecting the
differences between the final and initial states. All wave-operator diagrams
are open at the top, as in the nondegenerate theory. Summations over the
final states in wave-operator diagrams must exclude model states.

In nondegenerate MBPT the first-order energy was given by (5.6) or
(5.7), which benefited from the cancellation of half the sum −

∑
i uii with

1
2

∑
ij〈ij‖ij〉 = 1

2

∑
i v

′
ii (see (3.152)). In the present case v̂′ is not equal

to û (and is different for different model states), and thus the cancellation
is incomplete. Instead we find that the diagonal elements of the first-order
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level shift operator are given by∑
i

(
f ′

ii − uii + 1
2v′ii

)
=

∑
i

(
− v′ii + 1

2v′ii
)

+
∑

i

(f ′
ii + v′ii − uii)

= −1
2

∑
ij

〈ij‖ij〉 +
∑

i

gii , (8.93)

using (8.90). Diagrammatically this result is represented by (compare (5.7))

− + ⊗ = −1
2

∑
ij

〈ij‖ij〉 +
∑

i

〈i|ĝ|i〉 (8.94)

and represents the vacuum expectation value 〈0|V̂ |0〉 of the unmodified per-
turbation (which is different for each model state). The remaining part of the
first-order level-shift operator is the modified operator Ŵ ′(1) of Section 8.3;
it has no diagonal contribution here because 〈0|Ŵ ′(1)|0〉 = 0.

The off-diagonal part of the first-order level-shift operator is represented
by the two diagrams

x u

⊗
= 〈x|ĝ|u〉{x̂†û}, (8.95)

x u v y = 〈xy‖uv〉{x̂†ŷ†v̂û}. (8.96)

with the creation or annihilation operators acting on the respective initial
state. The first diagram represents a single replacement for the final (bra)
state relative to the initial (ket) state, with matrix element

〈Φx
u|Ŵ (1)|0〉 = 〈x|ĝ|u〉 . (8.97)

The second diagram represents a double replacement, with matrix element

〈Φxy
uv|Ŵ (1)|0〉 = 〈xy‖uv〉 . (8.98)

In both these equations |0〉 represents the ket state for the respective ma-
trix element, and |Φx

u〉 and |Φxy
uv〉 are defined relative to this particular ket

state. There are no first-order contributions for more than two replacements.
When an incomplete model space is used, the label values for the open lines
are restricted to exclude states that are not part of the model space.

The first-order wave operator is represented by the same diagrams as the
first-order wave function in the nondegenerate case, (5.15), (5.16), but with



232 Open-shell and quasidegenerate perturbation theory

a modified one-electron interaction:

(a) (i)
⊗

=
∑
ai

〈a|ĝ|i〉
εa
i

{â†î}, (8.99)

(a) (i) (j) (b) =
1
4

∑
abij

〈ab‖ij〉
εab
ij

{â†b̂†ĵ î}. (8.100)

These diagrams are similar to those for the off-diagonal elements of the first-
order level-shift operator, (8.95), (8.96), but with single arrows instead of
double arrows and with an implied resolvent line above the vertex. Again,
it should be remembered that the particle or hole classification and the
modified one-electron interaction are specific to each column of the wave
operator matrix, being determined by the corresponding ket state as the
Fermi vacuum, and that model states must be excluded from the sum over
final states in wave-operator diagrams. In the case of a complete model
space this last restriction means that at least one open-line label in each
term in these sums must not take on a valence state value.

8.7.4 Second-order diagrams

Skeletons for the second-order level-shift operator are shown in Fig. 8.9.
Skeletons 1, 2 are for diagonal elements, 3–6 represent single replacements,
7–10 represent double replacements, 11–13 represent triple replacements and
14 represents quadruple replacements. (However, the number of replace-
ments cannot exceed the number of valence hole states or the number of
valence particle states.) Skeletons 1, 2, 4, 5, 10, 12–14 generate one dia-
gram each, skeletons 3, 6, 8, 9, 11 generate two diagrams each and skeleton
7 generates three diagrams, giving a total of 21 diagrams. The summa-
tions over intermediate states must exclude model states. Note that no
resolvent line is present above the top vertex for any level-shift operator
diagram.

The definition of linked and unlinked diagrams is the same in the HK for-
malism as in the QDPT formalism for the complete model spaces described
in Sections 8.2–8.6, i.e. diagrams are considered unlinked if they have at
least one disconnected part in which all open lines are valence lines. All
the disconnected skeletons in Fig. 8.9 (skeletons 10 and 12–14) are unlinked,
and they are excluded when a complete model space is used because they
involve intermediate model states. However, for an incomplete model space
it is necessary to retain those contributions to the corresponding unlinked
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diagrams in which the intermediate state is not in the model space but the
final state is in the model space.

As an example for the interpretation of the second-order level-shift dia-
grams, we take one of the diagrams generated from skeleton 8 of Fig. 8.9:

x u v

(a)

y
⊗ =

∑
a

〈y|ĝ|a〉〈xa‖uv〉
εxa
uv

{x̂†ûŷ†v̂} . (8.101)

The final state |Φxy
uv〉, represented by the action of {x̂†ûŷ†v̂} on the initial

state, must be a model state, while the summation over a is restricted to
exclude intermediate model states. In a complete model space this exclusion
implies that a is restricted to virtual states, but in an incomplete model space
a may take on a valence index value provided that the resultant intermediate
state |Φxa

uv〉 is not part of the model space.
The second-order wave operator is given by (8.42), in which V̂ represents

the modified (normal-ordered) operator V̂N of (8.49). The diagrams repre-
senting the principal term of this operator are the same in the HK formalism
as in nondegenerate MBPT, Figs. 5.3 and 5.4, and are shown in skeleton form
in Fig. 8.10. They are seen to be similar to the skeletons for the off-diagonal
part of the second-order level-shift operator, Fig. 8.9, except that no bars
are present on any of the lines and a resolvent line is implied above the top
vertex. In this case the final states, as well as all intermediate states, must
exclude model states. The disconnected diagrams are not unlinked and are
included even in the complete model space case. However, we shall find that

1
⊗
⊗

2 3

⊗

4
⊗

5
⊗
⊗

6 7

⊗

8

⊗
9

⊗
⊗

10 11

⊗

12
⊗

13 14

Fig. 8.9. Skeletons for the second-order level-shift operator in the Hose–Kaldor
formalism. (A short bar across a line indicates limitation to active orbitals.)
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1

⊗

2
⊗

3
⊗
⊗

4 5

⊗

6
⊗

7

⊗
⊗

8 9

⊗

10
⊗

11 12

Fig. 8.10. Skeletons for the principal term of the second-order wave operator in
the Hose–Kaldor formalism.

1r

⊗

2r
⊗
3r

⊗

⊗

4r 5r

⊗

6r
⊗

7r

⊗

⊗

8r 9r

⊗

10r
⊗

11r 12r

Fig. 8.11. Skeletons for the renormalization term of the second-order wave operator
in the Hose–Kaldor formalism. An additional unfolded resolvent line at the top of
each diagram is implied.

certain contributions to the disconnected diagrams are canceled by unlinked
renormalization diagrams.

In the renormalization term those contributions in which the intermediate
state is the same as the initial state (|β〉 = |α〉 = |0〉 in (8.42)) vanish because
for the normal-ordered perturbation operator we have V00 = 0. The other
contributions remain and are described by folded diagrams. The skeletons
for these folded diagrams are shown in the folded-resolvent-line notation in
Fig. 8.11. An additional (unfolded) resolvent line at the top of each of these
diagrams is implied but not shown; this line can also be drawn in folded
form, with the lower branch below the lowest vertex.
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The intermediate state in these renormalization diagrams must be a model
state, while the final state cannot be a model state. Therefore the diagram
represented by skeleton 2r,

(x) (u)
(y)(v)

⊗ =
∑
xyuv

〈v|ĝ|y〉〈xy‖uv〉
εx
uεxy

uv
{x̂†û} , (8.102)

cannot contribute when the model space is complete, but with an incomplete
model space those terms of this diagram in which the intermediate state
|Φxy

uv〉 is in the model space, while the final state |Φx
u〉 is not, contribute to

the second-order wave operator.
Unlike the disconnected diagrams among the principal term skeletons seen

in Fig. 8.10, the disconnected folded diagrams in Fig. 8.11 are unlinked
and cancel with certain contributions to the disconnected principal-term
diagrams. We can illustrate this cancellation by considering diagrams 8 of
Fig. 8.10 and 8r of Fig. 8.11:

(a) (i)

(j)(b)

⊗

⊗
8

=
∑
abij

〈b|ĝ|j〉〈a|ĝ|i〉
εab
ij εa

i

{â†îb̂†ĵ} , (8.103)

(y) (u)

(i)(a)

⊗

⊗
8r

= −
∑
ayiu

〈a|ĝ|i〉〈y|ĝ|u〉
εay
iu εa

i

{â†îŷ†û} (8.104)

(the minus sign for diagram 8r is due to the fold.) It is seen that the whole
of diagram 8r cancels with those terms of diagram 8 in which b and j take
on valence values (i.e. b = y and j = u). The canceled terms are just those
that cause diagram 8 to become unlinked.

In the case of an incomplete model space there are two complications.
First, because Φy

u in diagram 8r must be in the model space, the cancellation
includes only those terms of diagram 8 for which Φb

j is in the model space,
leaving behind terms for which j and b take on valence label values but Φb

j

is not in the model space. Second, those terms of diagram 8r for which Φa
i

is in the model space, but Φay
iu is not, are not canceled because they do not

have corresponding contributions in diagram 8.
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In a similar way, diagrams 10r, 11r and 12r cancel those terms of diagrams
11, 10 and 12, respectively, in which the upper disconnected part, taken
separately, represents a model state. Since the lower disconnected part of the
disconnected principal-term diagrams must not be a model state (because
it determines the intermediate state), the only surviving terms are those in
which neither disconnected part of a disconnected principal-term diagram,
taken separately, represents a final model state. For the folded diagrams,
no such unlinked diagrams remain for a complete model space but for an
incomplete model space the only contributions of unlinked folded diagrams
that remain are those for which both disconnected parts, taken separately,
represent model states, while the entire final state is not in the model space.

8.7.5 Third-order level-shift diagrams

In order to identify all the distinct skeletons for the principal term of the
third-order level-shift operator, we use a scheme similar to that used in sub-
section 8.6.6 and divide the skeletons into classes and sets. The notation
(klm) will be used to describe a class of skeletons with k, l and m open
lines connected to the first, second and third vertex, respectively (counting
downwards from the top vertex). The various classes of linked skeletons are
organized in sets. The different classes in a set all have the same number of
skeletons and diagrams and can be obtained from each other by permutation
of the three vertices. The numbers of ASG skeletons and diagrams in one
representative class in each set and the total number of skeletons and dia-
grams are listed in Table 8.2, separately for linked and unlinked skeletons.
The linked and unlinked Hugenholtz skeletons for the representative classes
are shown in Figs. 8.12 and 8.13, respectively. For the unlinked skeletons,
classes (200) and (400) are omitted because they involve vacuum gaps and
classes (020) and (040) are used instead as representative classes.

The ASG diagrams for the principal term of the diagonal elements be-
long to class (000) and are the same as those for nondegenerate MBPT,
Figs. 5.1 and 5.2. They are repeated in skeleton form in Fig. 8.14, in or-
der to facilitate later discussion of the renormalization terms that can be
derived from them. Again, a characteristic of the QDPT case is that inter-
mediate model states are excluded from the summations for these diagrams.
There are no unlinked diagonal-element diagrams but, unlike nondegenerate
MBPT, there are diagonal renormalization contributions (as there are in the
complete-model-space formalism described in Section 8.6).

The linked principal-term ASG skeletons for the off-diagonal elements of
the third-order level-shift operator are shown in Figs. 8.15–8.17, organized by
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Table 8.2. Representative classes, numbers of distinct ASG skeletons and
diagrams in each class and set and total number of principal-term skeletons
and diagrams for the third-order level-shift operator (vacuum-gap skeletons

are omitted)

Number Repres- No. of Number in class Number in set
of replace- entative classes
ments class in set Skelets. Diagrams Skelets. Diagrams

Linked

0 (000) 1 8 14 8 14

1 (200) 3 4 6 12 18
(110) 3 7 18 21 54

2 (310) 6 3 6 18 36
(220) 3 2 7 6 21
(211) 3 4 18 12 54

3 (330) 3 1 2 3 6
(321) 6 2 8 12 48
(222) 1 1 8 1 8

4 (332) 3 1 4 3 12

Total linked 34 91 96 271

Unlinked

1 (020) 2 2 2 4 4

2 (040) 2 2 2 4 4
(220) 3 2 2 6 6
(211) 3 2 4 6 12

3 (420) 6 1 1 6 6
(411) 3 2 4 6 12
(321) 6 1 2 6 12
(222) 1 4 10 4 10

4 (422) 3 2 4 6 12
(431) 6 1 2 6 12
(332) 3 1 2 3 6

5 (442) 3 1 1 3 3
(433) 3 1 2 3 6

6 (444) 1 1 1 1 1

Total unlinked 23 39 64 106
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(000)
⊗

⊗
⊗

⊗
⊗ ⊗

⊗
⊗
⊗

⊗
⊗
⊗

(200)

⊗
⊗

⊗
⊗

(110)

⊗
⊗

⊗ ⊗

⊗

⊗
⊗

⊗
⊗
⊗

(310)

⊗ ⊗
⊗

(220)

⊗

(211)

⊗

⊗ ⊗
⊗

⊗

(330) (321)

⊗

(222) (332)

Fig. 8.12. Linked Hugenholtz skeletons for representative classes of the principal
term of the third-order level-shift operator in the HK formalism.

the number of replacements for the final state relative to the initial (vacuum)
state. The unlinked principal-term skeletons are shown, similarly organized,
in Figs. 8.18–8.20. In order to be able to identify all non-contributing di-
agrams, and for convenience in our later consideration of renormalization
skeletons, the principal-term ASG skeletons are shown for all classes, not
just the representative classes.

In the conversion of Hugenholtz skeletons to ASG skeletons it is important
to realize that some Hugenholtz skeletons may require more than one ASG
skeleton to describe the full set of diagrams that can be generated from those
skeletons. In the present case this situation occurs for the first skeleton of
the (211) class in Fig. 8.12 as well as for the corresponding skeletons of
the other two classes in that set, (121) and (112). This (211) Hugenholtz
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⊗

(020)

⊗
⊗

⊗

(040)

⊗

⊗

⊗

⊗

(220)

⊗
⊗

⊗

(211)

⊗

⊗
⊗

⊗

(420) (411)

⊗
⊗

⊗
⊗

(321)

⊗

(222)

⊗
⊗ ⊗

⊗
⊗

(422)

⊗
⊗ ⊗

(431)

⊗

(332)

⊗

(442) (433) (444)

Fig. 8.13. Unlinked Hugenholtz skeletons for representative classes of the principal
term of the third-order level-shift operator in the HK formalism.

1

⊗

2

⊗

3
⊗

4

⊗
⊗

5
⊗

⊗

6

⊗
⊗

7
⊗

⊗
⊗

8

Fig. 8.14. Diagonal linked ASG skeletons for the principal term of the third-order
level-shift operator in the Hose–Kaldor formalism.

skeleton generates six diagrams:
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9

(200)

⊗

10
⊗

11
⊗
⊗

12 13

(020)

⊗

14

⊗
15

⊗

⊗

16 17

(002)

⊗

18

⊗

19

⊗
⊗

20

21

(110)

⊗

22

⊗

23
⊗
24

⊗

⊗

25
⊗
⊗

26
⊗

⊗
⊗

27

28

(101)

⊗

29

⊗

30
⊗

31

⊗
⊗

32
⊗
⊗

33
⊗

⊗
⊗

34

35

(011)

⊗

36

⊗

37
⊗

38

⊗
⊗

39

⊗

⊗
40

⊗
⊗

⊗

41

Fig. 8.15. Single-replacement linked ASG skeletons for the principal term of the
third-order level-shift operator in the Hose–Kaldor formalism.

Two inequivalent ASG skeletons are needed to represent the same six dia-
grams:
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42

(310)

⊗
43

⊗
⊗

44 45

(301)

⊗

46
⊗
⊗

47 48

(130)

⊗
49

⊗

⊗

50 51

(103)

⊗

52

⊗
⊗

53 54

(031)

⊗

55

⊗

⊗

56 57

(013)

⊗

58

⊗
⊗

59 60

(220)

⊗
61

62

(202)

⊗

63 64

(022)

⊗

65 66

(211)

67

⊗

68

⊗
69

⊗
⊗

70 71

(121)

72

⊗

73
⊗

74
⊗

⊗

75

76

(112)

77

⊗

78

⊗

79

⊗
⊗

80

Fig. 8.16. Double-replacement linked ASG skeletons for the principal term of the
third-order level-shift operator in the Hose–Kaldor formalism.



242 Open-shell and quasidegenerate perturbation theory

⊗
81

(330)

⊗

82

(303)

⊗

83

(033)

84

(321)

⊗
85

86

(312)

⊗

87 88

(231)

⊗
89 90

(213)

⊗

91 92

(132)

⊗

93 94

(123)

⊗

95

96

(222)

97

(332)

98

(323)

99

(233)

Fig. 8.17. Triple- and quadruple-replacement linked ASG skeletons for the princi-
pal term of the third-order level-shift operator in the Hose–Kaldor formalism.

Thus there are only four Hugenholtz (211) skeletons in Fig. 8.12, while five
ASG skeletons are shown for each class in this set in Fig. 8.16; see Table 8.2.

Most skeletons in Figs. 8.14–8.20 generate one, two or four diagrams each.
The exceptions are skeletons 1, 60, 62, 138–140, 142, 144, 146, which gener-
ate three diagrams each, and skeleton 96, which generates eight diagrams.

The unlinked diagrams represented by skeletons 102, 103, 106 and 107 of
Fig. 8.18 can never contribute to the principal term of the third-order level-
shift operator, because their lower intermediate state is the same as their
final state and is thus a model state. These skeletons are included in the
figure in order to facilitate the consideration of renormalization skeletons
that can be derived from them. It will be shown later that skeletons 100,
102, 104, 105 always cancel fully with renormalization skeletons, so that
none of the unlinked principal-term skeletons 100–107 remains, even when
the model space is incomplete.
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⊗

100

(020)

⊗

⊗
⊗

101
⊗

102

(002)

⊗
⊗

⊗
103 104

(040)

⊗

⊗

105 106

(004)

⊗
⊗

107
⊗

⊗

108

(220)

⊗
⊗

109

⊗
⊗

110

(202)

⊗
⊗

111

⊗
⊗

112

(022)

⊗

⊗
113

⊗

114

(211)

⊗
⊗

⊗

115

⊗

116

(121)

⊗
⊗

⊗

117
⊗

118

(112)

⊗
⊗

⊗
119

Fig. 8.18. Single- and double-replacement unlinked ASG skeletons for the principal
term of the third-order level-shift operator in the Hose–Kaldor formalism.

When the model space is complete, any unlinked third-order skeleton that
has no line directly connecting the top and bottom vertices to each other
necessarily involves a model state either as the upper or lower intermedi-
ate state and cannot contribute to the principal term. (A classification of
skeletons according to their contribution status is given in Table 8.3.) As
examples we consider the diagrams derived from skeletons 108 and 111:

x u
y v

(a) (i)
⊗

⊗
=

∑
ai

〈x|ĝ|u〉〈iy‖av〉〈a|ĝ|i〉
εy
vεa

i

{x̂†ŷ†v̂û} (8.105)
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⊗
120

(420)

⊗

121

(402)

⊗
122

(240)

⊗

123

(204)

⊗

124

(042)

⊗

125

(024)

126

(411)

⊗
⊗

127 128

(141)

⊗

⊗

129

130

(114)

⊗
⊗

131

⊗
⊗

132

(321)

⊗
⊗

133

(312)

⊗

⊗
134

(231)

⊗
⊗

135

(213)

⊗

⊗
136

(132)

⊗
⊗

137

(123)

⊗

138

(222)

⊗

139
⊗
140

⊗

⊗
⊗

141

Fig. 8.19. Triple-replacement unlinked ASG skeletons for the principal term of the
third-order level-shift operator in the Hose–Kaldor formalism.

and

yv

x u

(a) (i)

⊗

⊗
=

∑
ai

〈ix‖au〉〈a|ĝ|i〉〈y|ĝ|v〉
εay
iv εy

v
{x̂†ŷ†v̂û} . (8.106)
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142

(422)

⊗
⊗
143 144

(242)

⊗

⊗
145

146

(224)

⊗
⊗
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⊗
148
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⊗

149

(413)

⊗
150

(341)

⊗

151

(314)

⊗
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(143)

⊗

153

(134)

⊗
154

(332)

⊗

155

(323)

⊗

156

(233)

⊗
157

(442)

⊗

158

(424)

⊗

159

(244)

160

(433)

161

(343)

162

(334)

163

(444)

Fig. 8.20. Quadruple-, quintuple- and sextuple-replacement unlinked ASG skele-
tons for the principal term of the third-order level-shift operator in the Hose–
Kaldor formalism.
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Table 8.3. Contribution status of third-order level-shift skeletons

Unlinked principal-term skeletons that never contribute because their lower in-
termediate state is always a model state:

102, 103, 106, 107.

Unlinked principal-term skeletons that may have residual contributions when
the model space is incomplete (skeletons that have no line connecting the top
and bottom vertices to each other):

108, 110, 111, 113–115, 118–121, 123, 125–127, 130, 131, 133–136, 138,
140–143, 145–149, 151, 153, 154, 156–160, 162, 163.

Unlinked principal-term skeletons that cancel with renormalization skeletons
but may have residual contributions when the model space is incomplete:

109, 112, 116, 117, 122, 124, 128, 129, 132, 137, 139, 144, 150, 152, 155,
161.

Renormalization skeletons (both linked and unlinked) that do not contribute
when the model space is complete but may have residual contributions when
the model space is incomplete (skeletons that have no line connecting the top
two vertices to each other):

5r, 10r, 14r, 22r, 23r, 27r, 32r, 39r, 42r, 44r, 46r, 48r, 50r, 55r, 60r, 68r,
73r, 80r, 81r, 84r, 87r, 88r, 93r, 97r, 100r, 101r, 104r, 105r, 108r–110r,
112r, 114r–117r, 120r–122r, 124r, 126r–129r, 132r, 134r, 135r, 137r–139r,
141r–145r, 147r–150r, 152r, 155r–161r, 163r.

Skeletons pairs that cancel with each other but may have residual contributions
when the model space is incomplete (asterisks indicate skeletons that have no
residual contributions even in an incomplete model space):

(100*, 102r), (101*, 103r), (104*, 106r), (105*, 107r), (109, 111r),
(112, 113r), (116, 118r), (117, 119r), (122, 123r), (124, 125r), (128, 130r),
(129, 131r), (132, 133r), (137, 136r), (139, 140r), (144, 146r), (150, 151r),
(152, 153r), (155, 154r), (161, 162r).

These two diagrams can contribute only when the model space is incomplete
and then only if the intermediate state Φy

v is not in the model space. In both
cases the final state Φxy

uv must be in the model space, and terms in which
the intermediate state Φa

i (in the first diagram) or Φya
vi (in the second) is a

model state are excluded from the sum.
All the other unlinked skeletons cancel with unlinked renormalization

skeletons, and no unlinked contributions of any kind remain when the model
space is complete (see Table 8.3). With an incomplete model space the can-
cellations are incomplete, as will be shown in the following discussion of the
renormalization terms.
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Each principal-term third-order skeleton, whether linked or unlinked, has
a corresponding renormalization skeleton, which is easily obtained from it by
restricting the lower intermediate state to be a model state and replacing the
lower resolvent line by a folded resolvent line surrounding the middle vertex.
It is therefore unnecessary to show all the renormalization skeletons; these
will be referred to using the numerical labels of the corresponding principal-
term skeletons with an added ‘r’.

Those renormalization skeletons, both linked and unlinked, that have no
line directly connecting the top two vertices to each other cannot contribute
when the model space is complete (Table 8.3). In these cases all lines are
valence lines, some because they connect to the bottom vertex and the oth-
ers because they are part of the final-state designation, making the upper
intermediate state a model state. There are 24 linked and 44 unlinked
renormalization skeletons of this type, including the diagonal skeleton 5r
(see Fig. 8.14). As examples we shall consider one of the two diagrams
generated by skeleton 23r and the diagram generated by skeleton 110r:

u

(v)

(y)

x

(z) (w)⊗
=

1
2

∑
yzvw

〈xw‖yz〉〈v|ĝ|u〉〈yz‖vw〉
εyz
uwεv

u

{x̂†û} , (8.107)

x u

v y

(z) (w)
⊗

⊗
= −〈y|ĝ|v〉

∑
zw

〈w|ĝ|z〉〈xz‖uw〉
εx
uεw

z

{x̂†ûŷ†v̂} . (8.108)

The first diagram has one pair of equivalent lines, three hole lines and two
loops (one of them a quasiloop). The resulting negative sign is canceled
by the negative sign due to the fold. This diagram can only contribute in
an incomplete model space, and then only from those terms in the sum for
which Φyz

vw is in the model space while Φyz
uw is not. (In all cases, the final

state Φx
u must be in the model space.) The second diagram has three hole

lines, three loops and no equivalent lines. Again, the final state Φxy
uv must

be in the model space, and the diagram can only contribute when Φx
u is not

in the model space, and then only for those terms in the sum for which Φxz
uw

is in the model space. Similar considerations apply to the other skeletons of
this type.
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As noted earlier, skeletons 100, 101, 104, 105 cancel completely with renor-
malization skeletons. This cancellation will be illustrated by skeletons 100
and 102r:

y u

(a) (i) (j) (b) ⊗

100

=
1
4

∑
abij

〈ij‖ab〉〈y|ĝ|u〉〈ab‖ij〉
εaby
ijuεab

ij

{ŷ†û} ,

(8.109)

y u(a) (i) (j) (b)

⊗

102r

= −1
4

∑
abij

〈ij‖ab〉〈ab‖ij〉〈y|ĝ|u〉
εaby
ijuεab

ij

{ŷ†û} .

(8.110)

In both diagrams, Φy
u must be in the model space (since it is the final state),

and terms in which Φaby
iju is in the model space are excluded. Thus the whole

of diagram 100 is always canceled by corresponding terms in diagram 102r,
but any terms in diagram 102r for which Φab

ij is in the model space (while
Φaby

iju is not) remain, because such terms are excluded from diagram 100.
When the model space is complete, Φab

ij cannot be in the model space when
Φaby

iju is not; in this case the cancellation of the two diagrams is complete.
Similar behavior is obtained for the unlinked skeleton pairs 101 and 103r,

104 and 106r and 105 and 107r. Combined with the fact that principal-term
skeletons 102, 103, 106 and 107 can never contribute, we find that none of
the unlinked principal-term skeletons 100–107 survive for any model space.

All remaining unlinked principal-term and renormalization skeletons can-
cel in pairs, as listed in Table 8.3, but may have residual terms surviving the
cancellation when the model space is incomplete. As examples we shall con-
sider diagrams derived from the skeleton pairs (109, 111r) and (132, 133r):

yv
x u

(i) (a)⊗

⊗

109

=
∑
ai

〈yi‖va〉〈x|ĝ|u〉〈a|ĝ|i〉
εxa
ui ε

a
i

{x̂†ŷ†v̂û} , (8.111)
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x u

yv

(i) (a)

⊗

⊗

111r

= −
∑
ai

〈yi‖va〉〈a|ĝ|i〉〈x|ĝ|u〉
εxa
ui ε

a
i

{x̂†ŷ†v̂û} .

(8.112)

In both diagrams Φxy
uv must be in the model space, and the sums are re-

stricted to terms in which Φxa
ui is not in the model space. However, cases in

which Φx
u is not a model state are excluded from diagram 111r and thus re-

main uncanceled in diagram 109. Similarly, terms in the sum in which Φa
i is

a model function (but Φxa
ui is not) are excluded from diagram 109 and thus

remain uncanceled in diagram 111r. No uncanceled terms of these types
remain when the model space is complete.

yv

x

u

(i)

wz

⊗

⊗

132

= −1
2

∑
i

〈iy‖uv〉〈z|ĝ|w〉〈x|ĝ|i〉
εxz
iwεx

i

{x̂†ŷ†ẑ†ŵv̂û} ,

(8.113)

x
u

(i)

yv

wz
⊗

⊗

133r

=
1
2

∑
i

〈iy‖uv〉〈x|ĝ|i〉〈z|ĝ|w〉
εxz
iwεx

i

{x̂†ŷ†ẑ†ŵv̂û} ,

(8.114)

In both these diagrams Φxyz
uvw must be in the model space, and the sums are

restricted to terms in which Φxz
iw is not in the model space. However, cases

in which Φz
w is not a model state are excluded from diagram 133r and thus

remain uncanceled in diagram 132. Similarly, terms in the sum in which
Φx

i is a model function (but Φxz
iw is not) are excluded from diagram 132

and thus remain uncanceled in diagram 133r. No uncanceled terms of these
types remain when the model space is complete.

The denominator factors in some residual terms for incomplete model
spaces, as in (8.107), (8.108), involve differences in valence-orbital energies
only and are thus likely to be relatively small. Nevertheless, in those terms
that contribute to the sum, each factor represents a zero-order energy dif-
ference between a model state and an external state. As long as the choice
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of model space maintains significant zero-order energy differences between
all model states on the one hand and all external states on the other, con-
vergence of the perturbation series need not be seriously impaired.

As in the case of the complete-model-space approach described in Sec-
tions 8.2–8.6, the number of diagrams generated in the HK approach is
also quite large and increases very rapidly with the order of the calculation.
Coupled with the summation restrictions, this situation makes QDPT cal-
culations difficult, and they are rarely practicable beyond the third order of
the energy.



9

Foundations of coupled-cluster theory

9.1 Coupled-cluster theory for noninteracting He atoms

Before beginning the formal development of coupled-cluster (CC) theory
and its diagrammatic tools, we will introduce some essential elements of
coupled-cluster theory in a conceptual form. For this purpose, we look again
at the model problem of N noninteracting He atoms, which we examined in
Section 1.7 in the context of CI and in Section 2.4 for BWPT and RSPT.

We shall use the notation and basis set of Section 1.7. In this basis we
have two orthonormal two-electron functions for each atom, {φ0(i), χ(i), i =
1, 2, . . . , N}, where φ0(i) is the zero-order function for atom i and χ(i) repre-
sents a two-electron excitation from φ0(i). Since the atoms are noninteract-
ing, the functions on one atom are orthogonal to those on any other atom.
We define a single-atom two-electron excitation operator t̂i for the ith atom
in the space spanned by {φ0(i), χ(i)} by

t̂iφ0(i) = τχ(i) , t̂iχ(i) = 0 , (9.1)

where τ is a constant to be determined. The t̂i operator has no effect on
the basis functions for the other atoms,

t̂iφ0(j) = φ0(j) , t̂iχ(j) = χ(j) (i �= j) . (9.2)

For the N -atom wave function we define the operator

T̂2 =
∑

i

t̂i (9.3)

(the subscript 2 on T̂2 indicates that it is a sum of operators that excite two
electrons at a time). The effect of T̂2 on the N -atom functions Φ0, Φi, Φij ,

251
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etc. (Section 1.7) is easily found:

T̂2Φ0 =
∑

i

t̂iΦ0 = τ
∑

i

Φi ,

T̂2Φi =
∑

j

t̂jΦi = τ
∑

j (j �=i)

Φij = τ
∑

j

Φij (since Φii = 0),

T̂ 2
2 Φ0 = τ

∑
i

T̂2Φi = τ2
∑
ij

Φij ,

T̂ 3
2 Φ0 = τ2

∑
ij

T̂2Φij = τ3
∑
ijk

Φijk , etc.

(9.4)

We know that the exact solution for N noninteracting He atoms can be
written in the form

Ψ = Φ0 +
∑

i

τΦi + 1
2!

∑
ij

τ2Φij + 1
3!

∑
ijk

τ3Φijk + · · · (9.5)

(compare (1.32)). Therefore (compare (1.34)),

Ψ = Φ0 + T̂2Φ0 + 1
2! T̂

2
2 Φ0 + 1

3! T̂
3

2 Φ0 + · · · = eT̂2Φ0 . (9.6)

The exponential Ansatz Ψ = eT̂2Φ0, which is a characteristic of the coupled-
cluster approach, automatically accounts for the correct relationship be-
tween the coefficients τ, τ2, . . . of the various excitation levels. In the CC
approach we write the wave function in this exponential form and derive
equations for the determination of the cluster operators (T̂2 in this case)
and the corresponding energy.

The only unknown in T̂2 in this example is the coefficient τ , and to obtain
equations for τ and the corresponding energy E we project the Schrödinger
equation, in the form

(Ĥ − E)eT̂2Φ0 = 0 , (9.7)

onto 〈Φ0| and 〈Φi| (the different values of i all lead to the same final
equation):

〈Φ0|(Ĥ − E)eT̂2 |Φ0〉 = 0 ,

〈Φi|(Ĥ − E)eT̂2 |Φ0〉 = 0 .
(9.8)
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Using (9.4) and (1.23) we obtain the following matrix elements:

〈Φ0|EeT̂2 |Φ0〉 = E〈Φ0|Φ0〉 + E〈Φ0|T̂2|Φ0〉 + · · · = E , (9.9)

〈Φi|EeT̂2 |Φ0〉 = E〈Φi|Φ0〉 + E〈Φi|T̂2|Φ0〉 + 1
2E

∑
jk

〈Φi|T̂ 2
2 |Φjk〉 + · · ·

= 0 + Eτ
∑

j

〈Φi|Φj〉 + 0 + · · · = Eτ , (9.10)

〈Φ0|ĤeT̂2 |Φ0〉 = 〈Φ0|Ĥ|Φ0〉 + 〈Φ0|ĤT̂2|Φ0〉 + 1
2〈Φ0|ĤT̂ 2

2 |Φ0〉 + · · ·
= E0 + τ

∑
i

〈Φ0|Ĥ|Φi〉 + 0 + · · · = Nε0 + Nτβ , (9.11)

〈Φi|ĤeT̂2 |Φ0〉 = 〈Φi|Ĥ|Φ0〉 + 〈Φi|ĤT̂2|Φ0〉 + 1
2〈Φi|ĤT̂ 2

2 |Φ0〉 + · · ·
= β∗ + τ

∑
j

〈Φi|Ĥ|Φj〉 + 1
2τ2

∑
jk

〈Φi|Ĥ|Φjk〉 + 0 + · · ·

= β∗ + τ〈Φi|Ĥ|Φi〉 + 1
2τ2

∑
j

〈Φi|Ĥ|(Φij + Φji)〉

= β∗ + τ [(N − 1)ε0 + α] + τ2(N − 1)β. (9.12)

Substituting in (9.8), we obtain a pair of simultaneous equations for τ and E:

N(ε0 + βτ) = E , (9.13)

β∗ + τ [(N − 1)ε0 + α] + τ2(N − 1)β = τE . (9.14)

The second equation includes two terms, τNε0 and τ2Nβ, containing N as
a factor but, as we see from the first equation, their sum cancels against τE

on the r.h.s., leaving a quadratic equation for τ that is independent of N :

β∗ + (α − ε0)τ − βτ2 = 0 . (9.15)

Since τ is independent of N , we see from the first equation that E is pro-
portional to N , as required for extensivity. We can write

E = Nε , ε = ε0 + ∆ε , ∆ε = βτ . (9.16)

In fact, it is easy to see that the equations obtained here for τ and ∆ε are
equivalent to the equations (1.16), (1.17) for c and ∆ε in the full-CI solution
for a single He atom; thus τ = c and the CC solution is indeed the exact
solution, (1.32), for the N -atom problem.

Thus, coupled-cluster theory (limited in this case to clusters of double
excitations) gives the exact answer, in the form eT̂2Φ0, for the noninteracting
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He atoms. If we bring the atoms closer and allow them to interact, the
correct wave function will have additional (but relatively smaller) terms.

The following characteristic features of the CC approach, in addition to
the exponential Ansatz for the wave function and the resulting extensivity,
should be noted.

• Instead of the eigenvalue equation of CI, we obtain a set of simultaneous
algebraic equations by projecting the Schrödinger equation onto the zero-
order function and onto the functions obtained by the operation of the
cluster operators on the zero-order function.

• The first equation (called the energy equation) provides an expression for
the energy in terms of the coefficients or amplitudes appearing in the clus-
ter operators. The energy cancels in the other equations (the amplitude
equations), allowing the amplitudes to be determined by the solution of
these remaining simultaneous equations. After the amplitudes have been
obtained, the energy can be calculated from the energy equation.

• The amplitude equations are nonlinear, containing powers and products
of the various amplitudes. Iterative methods are generally required for
their solution.

9.2 The coupled-cluster wave function

9.2.1 The exponential Ansatz and extensivity

In Section 2.5 we introduced the wave operator Ω, which converts a zero-
order wave function Φ0 into the exact wave function Ψ:

ΩΦ0 = Ψ . (9.17)

One form for Ω is given by a linked-diagram expansion,

Ω|Φ0〉 = |Φ0〉 +
∞∑

k=1

(
(R̂0Ŵ )k|Φ0〉

)
L

. (9.18)

We will see shortly that Ω may also be written quite generally as

Ω = eT̂ , Ψ = eT̂ Φ0 , (9.19)

where T̂ is an excitation operator. This form, which is the coupled-cluster
choice, is arguably the most convenient and powerful form of Ω. Before a
formal derivation, however, let us consider some of the consequences of this
choice.
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The exponential Ansatz for the wave operator immediately manifests the
extensivity property. Consider a system A · · ·B composed of two nonin-
teracting subsystems A and B and expressed in terms of orbitals localized
on the two subsystems. If the zero-order wave function for the system is
separable,

Φ0(A · · ·B) = Φ0(A)Φ0(B) (9.20)

(overall antisymmetrization of the wave function is unnecessary since the
systems are noninteracting), and if T̂ for the system is additive,

T̂ (A · · ·B) = T̂ (A) + T̂ (B) , (9.21)

then the total wave function is multiplicatively separable,

Ψ(A · · ·B) = eT̂ (A···B)Φ0(A · · ·B) = eT̂ (A)+T̂ (B)Φ0(A)Φ0(B)

= eT̂ (A)Φ0(A)eT̂ (B)Φ0(B) = Ψ(A)Ψ(B)
(9.22)

(operators on the A and B subsystems commute with each other). This
separability of the wave function ensures additivity of the energy,

Ĥ(A · · ·B)Ψ(A · · ·B) = [Ĥ(A) + Ĥ(B)]Ψ(A)Ψ(B)

= [Ĥ(A)Ψ(A)]Ψ(B) + Ψ(A)[Ĥ(B)Ψ(B)]

= [E(A) + E(B)]Ψ(A · · ·B) , (9.23)

as required for extensivity. Equation (9.23) is a weaker condition than (9.22)
and is the preferred definition of extensivity. Unlike CC, finite-order MBPT
(i.e. RSPT) does not satisfy the wave-function multiplicative separability
condition (9.22), but it always gives extensive results for the energy.

9.2.2 The cluster operators

The coupled-cluster wave function is written in the form

Ψ = eT̂ Φ0 , (9.24)

where Φ0 = |0〉 is the reference function and

T̂ = T̂1 + T̂2 + T̂3 + · · · . (9.25)
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The one-body (T̂1) two-body (T̂2) etc. cluster operators are given by

T̂1 =
∑
ia

tai â
†î =

∑
ia

tai {â†î} (9.26)

T̂2 =
1

(2!)2
∑
ijab

tab
ij â†b̂†ĵ î =

1
4

∑
ijab

tab
ij {â†îb̂†ĵ} (9.27)

T̂3 =
1

(3!)2
∑

ijkabc

tabc
ijk â†îb̂†ĵĉ†k̂ =

1
36

∑
ijkabc

tabc
ijk{â†îb̂†ĵc†k̂} (9.28)

etc., where tab...
ij... are coefficients to be determined, usually referred to as the

amplitudes for the corresponding operators, and the strings of creation and
annihilation operators are automatically in normal-ordered form (as before,
the braces { } indicate normal ordering). In general,

T̂m =
1

(m!)2
∑
ij...
ab...

tab...
ij... {â†îb̂†ĵ · · · } (9.29)

comprises m pairs of creation and annihilation operators, producing m-fold
excitations, where m ≤ N , the number of electrons. The 1/(m!)2 factor
accounts for the redundancy created by the unrestricted summations, since
any permutation of the m hole indices or of the m particle indices does not
produce a distinct contribution. Furthermore, since for example

â†îb̂†ĵ = −â†ĵb̂†î = −b̂†îâ†ĵ = b̂†ĵâ†î , (9.30)

we also require that

tab
ij = −tab

ji = −tbaij = tbaji , (9.31)

so that the (2!)2 = 4 contributions from permutations of the i, j and a, b

indices will produce four equal terms, this repetition being offset by the
factor 1

4 . More generally, all tab...
ij... are defined to be antisymmetric in the

hole indices and (separately) in the particle indices,

t
P̂ ′(ab...)

P̂ (ij...)
= (−1)σ(P̂ )+σ(P̂ ′)tab...

ij... , (9.32)

where P̂ and P̂ ′ are permutation operators and σ(P̂ ), σ(P̂ ′) are their pari-
ties.

The T̂ operator for an N -electron system, (9.25), terminates with the N -
fold cluster operator T̂N but in actual applications T̂ has to be truncated,
usually at the T̂2 or T̂3 level, as discussed further below.

If the exponential wave operator is expanded in a Taylor series,

eT̂ = 1 + T̂ + 1
2 T̂ 2 + 1

3! T̂
3 + · · · , (9.33)
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and T̂ is expanded as in (9.25), we obtain

Ψ = Φ0 + T̂1Φ0 + T̂2Φ0 + · · ·
+ 1

2 T̂ 2
1 Φ0 + T̂1T̂2Φ0 + 1

2 T̂ 2
2 Φ0 + · · ·

+ 1
3! T̂

3
1 Φ0 + 1

2 T̂ 2
1 T̂2Φ0 + 1

2 T̂1T̂
2

2 Φ0 + 1
3! T̂

3
2 Φ0 + · · ·

+ · · · (9.34)

(note that the different T̂m operators commute). Contributions to the wave
function of the form T̂mΦ0 are called connected-cluster contributions while
those involving products of cluster operators, such as 1

2 T̂ 2
2 Φ0 or T̂1T̂2Φ0, are

disconnected-cluster contributions. These disconnected-cluster terms, which
are a direct consequence of the exponential form of the wave operator, are
responsible for the extensivity of the CC wave function.

Because of the two-electron nature of the Hamiltonian, the most impor-
tant connected-cluster contribution to the wave function is T̂2Φ0. If Φ0

is a Hartree–Fock wave function (canonical or otherwise) for the state of
interest, the contribution of T̂1Φ0 is quite small, as a consequence of the
Brillouin theorem (Section 1.5). This theorem, which is valid for UHF and
closed-shell RHF wave functions, states that matrix elements of the Hamil-
tonian between the Hartree–Fock function and singly excited determinants
vanish:

〈Φa
i |Ĥ|Φ0〉 = 0 (HF case). (9.35)

In other cases, including ROHF, T̂1Φ0 may be important.
Compared with other correlation methods, CC treatments that include

T̂1 and its products are relatively insensitive to the choices of Φ0 and the
orbitals (within a given basis set). This insensitivity is due to the fact
that the effect of the operator eT̂1 is to transform Φ0 to another Slater
determinant (Thouless, 1960), and it is thus equivalent to a transformation
of the orbital basis (see subsection 3.2.4). This property of eT̂1 is known as
the Thouless theorem.

The most important disconnected-cluster contribution, at least in the
Hartree–Fock case, is 1

2 T̂ 2
2 Φ0 (though higher powers of T̂2 can become more

important as the size of the system increases). The connected T̂3Φ0 con-
tribution is important particularly in systems with high electron densities,
including molecules containing multiple bonds. Higher-order connected con-
tributions (T̂4Φ0, T̂5Φ0, T̂6Φ0 etc.) are of much less importance in general,
though they can be important in special situations.
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The simplest CC approach is that of coupled-cluster doubles (CCD), in
which T̂ is truncated to

T̂CCD = T̂2 . (9.36)

The CCD wave function includes all connected and disconnected clusters
involving T̂2 only,

ΨCCD = eT̂2Φ0 = Φ0 + T̂2Φ0 + 1
2 T̂ 2

2 Φ0 + 1
3! T̂

3
2 Φ0 + · · · . (9.37)

The most common extension of this model is coupled-cluster singles and
doubles (CCSD), defined by

T̂CCSD = T̂1 + T̂2 . (9.38)

An excellent approximation to the exact wave function is usually provided
by the CCSDT model, which adds the triple-excitation clusters:

T̂CCSDT = T̂1 + T̂2 + T̂3 . (9.39)

Owing to the high computational cost of including T̂3, however, this model
is often approximated in a number of ways.

9.3 The coupled-cluster doubles (CCD) equations

We shall derive the equations for the coupled-cluster doubles model in several
ways, in order to clarify the correspondence between the various approaches
and to demonstrate the advantages of the diagrammatic procedures. First,
in subsection 9.3.1, we use configuration-space techniques, including the
Slater–Condon rules for matrix elements of the Hamiltonian between Slater
determinants, as commonly employed in the configuration-interaction for-
malism. Next, in subsection 9.3.2, we use an algebraic derivation, employ-
ing second quantization and the generalized Wick’s theorem. Following a
section that introduces the diagrammatic representation of the cluster oper-
ators and demonstrates the connection between the exponential Ansatz of
coupled-cluster theory and the linked-diagram theorem of MBPT, we derive
the CCD equations diagrammatically in Section 9.5.

9.3.1 Coupled-cluster doubles equations: configuration-space

derivation

Equation (9.37) provides the simplest coupled-cluster approximation, the
coupled-cluster doubles model. We can derive the CCD equations for the T̂2
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amplitudes and energy by applying the Slater–Condon rules in a
configuration-space formalism.

Inserting ΨCCD into the Schrödinger equation, we obtain

ĤΨCCD = ECCDΨCCD , (9.40)

Now projecting from the left with the reference function 〈Φ0| we obtain the
energy,

ECCD = 〈Φ0|Ĥ|ΨCCD〉 , (9.41)

since 〈Φ0|ΨCCD〉 = 1 by the choice of intermediate normalization. Using the
expansions in (9.27) and (9.37), the energy expression becomes

ECCD = 〈Φ0|Ĥ(1+ T̂2)|Φ0〉 = Eref +
∑
i>j
a>b

〈Φ0|Ĥ|Φab
ij 〉tab

ij = Eref +
∑
i>j
a>b

〈ij‖ab〉tab
ij

(9.42)
(no other powers of T̂2 can contribute, as is easily seen from the Slater–
Condon rules).

At this point it is convenient to subtract Eref from both sides of the
Schrödinger equation, to give

ĤNΨCCD = ∆ECCDΨCCD , (9.43)

where ĤN = Ĥ − Eref. To bring out the correspondence with perturbation
theory clearly, we write out the full Hamiltonian in first-quantization form,
using the analysis in Section 3.5 and subsection 3.6.3. We have

ĤN = F̂ − Û + Ĥ2 − Eref

= Ĥ0 + F̂ o − Û + Ĥ2 − Eref , (9.44)

where

Ĥ0 = F̂ d =
∑

µ

f̂d
µ , 〈p|f̂d|q〉 = εpδpq ,

F̂ o =
∑

µ

f̂o
µ , 〈p|f̂o|q〉 = (1 − δpq)〈p|f̂ |q〉 ,

Û =
∑

µ

ûµ , 〈p|û|q〉 =
∑

i

〈pi‖qi〉 ,

Ĥ2 =
∑
µ>ν

1
rµν

,

Eref = E0 + E(1) , E0 =
∑

i

εi , E(1) = −1
2

∑
ij

〈ij‖ij〉 .

Note that, in the canonical HF case, F̂ o = 0 and F̂ d = F̂ .
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To calculate the energy we need the amplitudes tab
ij , and we can obtain

equations for these amplitudes by projecting (9.43) onto all double excita-
tions. The number of resulting equations is exactly the same as the number
of amplitudes tab

ij to be determined. For a given set of indices i, j, a, b we
have

〈Φab
ij |ĤNeT̂2 |Φ0〉 = ∆ECCD〈Φab

ij |eT̂2 |Φ0〉 (9.45)

or

〈Φab
ij |ĤN(1 + T̂2 + 1

2 T̂ 2
2 )|Φ0〉 = ∆ECCDtab

ij . (9.46)

This equation contains a quadratic term, 1
2 T̂ 2

2 , in addition to the linear term
T̂2, but note that there has been no truncation of the exponential operator
since higher powers of T̂2 produce six-fold and higher excitations, which
cannot interact with the double excitations in the bra part of the matrix
element.

We next apply the Slater–Condon rules to the individual terms in the
parentheses in (9.46). Only the two-electron part Ĥ2 of ĤN contributes to
the first term, giving

〈Φab
ij |ĤN|Φ0〉 = 〈ab‖ij〉 . (9.47)

The second (linear) term is

〈Φab
ij |ĤNT̂2|Φ0〉 =

∑
k>l
c>d

〈Φab
ij |ĤN|Φcd

kl 〉tcdkl

= 〈Φab
ij |Ĥ0 − Eref|Φab

ij 〉tab
ij +

∑
k>l
c>d

〈Φab
ij |F̂ o − Û |Φcd

kl 〉tcdkl

+
∑
k>l
c>d

〈Φab
ij |Ĥ2|Φcd

kl 〉tcdkl

= L0 + L1 + L2 . (9.48)

From (3.154) we get

(Ĥ0 − E0)|Φab
ij 〉 = (εa + εb − εi − εj)|Φab

ij 〉 = −εab
ij |Φab

ij 〉 , (9.49)

where εab
ij = εi + εj − εa − εb, so that for the first term in (9.48) we have

L0 =
(
−εab

ij + 1
2

∑
kl

〈kl‖kl〉
)
tab
ij . (9.50)
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The second (one-electron) term in (9.48) contributes only if at least three
of the indices k, l, c, d are equal to the same number of the indices i, j, a, b.
Application of the Slater–Condon rules to this term gives:

L1 = −
∑

k

ukkt
ab
ij −

∑
k

[(fo
jk − ujk)tab

ik − (fo
ik − uik)tab

jk]

+
∑

c

[(fo
bc − ubc)tac

ij − (fo
ac − uac)tbcij ] . (9.51)

Next we turn to the two-electron term L2 in (9.48). For this term to be
nonzero, at least two of the k, l, c, d indices must equal the same number of
i, j, a, b. For cd = ab we get ∑

k>l

〈ij‖kl〉tab
kl ,

and for kl = ij we get ∑
c>d

〈ab‖cd〉tcdij .

If we have one coincidence between the hole indices and another between
the particle indices, we get

−
∑
kc

(
〈bk‖cj〉tac

ik − 〈bk‖ci〉tac
jk − 〈ak‖cj〉tbcik + 〈ak‖ci〉tbcjk

)

(the signs arise from the maximum-coincidence permutations required in
the application of the Slater–Condon rules). Careful analysis shows that
the above terms also account for most terms arising from the cases in which
three or four of the indices k, l, c, d are equal to three or four, respectively,
of i, j, a, b, except for the additional contributions

−
∑
kl

(〈jl‖kl〉tab
ik − 〈il‖kl〉tab

jk) +
∑
cl

(〈bl‖cl〉tac
ij − 〈al‖cl〉tbcij ) ,

arising from the three-coincidences case, and∑
k>l

〈kl‖kl〉tab
ij = 1

2

∑
kl

〈kl‖kl〉tab
ij ,

arising from the four-coincidences case. These additional contributions are
expressible in terms of matrix elements of û and, together with the last term
in L0, (9.50), cancel all the û contributions to L1 in (9.51).
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The total result, L0 + L1 + L2 = L, for the linear term is

L = −εab
ij tab

ij −
∑

k

fo
jkt

ab
ik +

∑
k

fo
ikt

ab
jk +

∑
c

fo
bct

ac
ij −

∑
c

fo
act

bc
ij

+
∑
k>l

〈ij‖kl〉tab
kl +

∑
c>d

〈ab‖cd〉tcdij

−
∑
kc

(
〈bk‖cj〉tac

ik − 〈bk‖ci〉tac
jk − 〈ak‖cj〉tbcik + 〈ak‖ci〉tbcjk

)
. (9.52)

In the canonical HF case f̂o = 0 and the last four terms in the first line of
(9.52) vanish.

All the terms considered so far (i.e. through terms linear in T̂2) are the
same terms that occur in a CID calculation. Coupled-cluster theory differs
from CID primarily because of the quadratic term in (9.46),

Q = 1
2〈Φ

ab
ij |HNT 2

2 |Φ0〉 = 1
2

∑
k>l
c>d

∑
m>n
e>f

〈Φab
ij |ĤN|Φcdef

klmn〉t
cd
kl t

ef
mn . (9.53)

This term introduces quadruple excitations into the wave function but with
coefficients that are sums of products of the coefficients of double excita-
tions. Nonzero contributions to Q are obtained only when four of the in-
dices k, l, m, n, c, d, e, f in (9.53) are equal to i, j, a, b, and it is obvious that
only Ĥ2, the two-electron part of the Hamiltonian, can contribute. There
are many possibilities for the required four coincidences, and it is left as an
exercise for the reader to prove that

Q =
∑
k>l
c>d

〈kl‖cd〉
[
(tab

ij tcdkl + tcdij tab
kl ) − 2(tac

ij tbdkl + tbdij tac
kl )

− 2(tab
ik tcdjl + tcdik tab

jl ) + 4(tac
ik tbdjl + tbdik tac

jl )
]
. (9.54)

A very important observation pertains to the right-hand side of the am-
plitude equation (9.46). From (9.42) we see that

∆ECCD =
∑
i>j
a>b

〈ij‖ab〉tab
ij (9.55)

and, since the summation labels are dummy variables, the first term in
Q, (9.54), is equal to ∆ECCDtab

ij . Consequently, this term cancels against
the r.h.s. of (9.46), eliminating the unknown energy from the amplitude



9.3 The coupled-cluster doubles (CCD) equations 263

equations. Rearranging terms and converting to unrestricted summations,
the CCD amplitude equations can then be written as

εab
ij tab

ij = 〈ab‖ij〉 + 1
2

∑
cd

〈ab‖cd〉tcdij + 1
2

∑
kl

〈ij‖kl〉tab
kl

−
∑
kc

(
〈bk‖cj〉tac

ik − 〈bk‖ci〉tac
jk − 〈ak‖cj〉tbcik + 〈ak‖ci〉tbcjk

)
−

∑
k

fo
jkt

ab
ik +

∑
k

fo
ikt

ab
jk +

∑
c

fo
bct

ac
ij −

∑
c

fo
act

bc
ij

+
∑
klcd

〈kl‖cd〉
[

1
4 tcdij tab

kl − 1
2(tac

ij tbdkl + tbdij tac
kl )

− 1
2(tab

ik tcdjl + tcdik tab
jl ) + (tac

ik tbdjl + tbdiktac
jl )

]
. (9.56)

Once again we see the emergence of simultaneous algebraic equations (in-
stead of the eigenvalue problem of CI), which characterizes the CC methods.
Since the equations are quadratic they are solved iteratively, substituting the
amplitudes tab

ij obtained in each iteration into the quadratic terms for the
next iteration.

As we shall see in the diagrammatic derivation in Section 9.5, the quantity
∆ECCDtab

ij corresponds to an unlinked diagram and therefore must cancel
in the final equations. Because of the absence of the 1

2 T̂ 2
2 term in the CID

equations, ∆ECIDtab
ij is not canceled there and therefore the CI procedure

retains contributions arising from unlinked diagrams. A CI-like model that
corrects for this deficiency and restores extensivity is provided by the lin-
earized CCD (LCCD) approach. In this approach, after cancellation of
the unlinked terms the remaining quadratic contributions in (9.56) are ne-
glected (Č́ıžek 1966). The energy in this approximation corresponds to an
infinite sum of double-excitation diagrams (Bartlett and Shavitt, 1977b) and
is correct through third order in MBPT. This model has also been called
D-MBPT(∞) (Bartlett, Shavitt and Purvis, 1979), CEPA(0) and LCPMET
(Č́ıžek 1966, Adams, Jankowski and Paldus 1979).

9.3.2 Coupled-cluster doubles equations: algebraic derivation

For an algebraic derivation of the coupled-cluster doubles equations we use
second quantization and the generalized Wick’s theorem for products of
normal-ordered products of operators and write the Hamiltonian in
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normal-ordered form according to subsection 3.6.3:

ĤN = (Ĥ0)N + F̂ o
N + Ŵ

=
∑

p

εp{p̂†p̂} +
∑
p�=q

fpq{p̂†q̂} + 1
4

∑
pqrs

〈pq‖rs〉{p̂†q̂†ŝr̂} . (9.57)

To save work it will be convenient to combine the first two terms, using
εp = fpp, so that we have

ĤN = F̂N + Ŵ =
∑
pq

fpq{p̂†q̂} + 1
4

∑
pqrs

〈pq‖rs〉{p̂†q̂†ŝr̂} . (9.58)

Proceeding as in subsection 9.3.1, equations (9.40)–(9.43), we get

∆ECCD = 〈0|ĤN(1 + T̂2)|0〉 = 〈0|ĤNT̂2|0〉

=
∑
i>j
a>b

〈
0
∣∣∣[∑

pq

fpq{p̂†q̂} + 1
4

∑
pqrs

〈pq‖rs〉{p̂†q̂†ŝr̂}
]
{â†b̂†ĵ î}

∣∣∣0〉
tab
ij ,

(9.59)

recalling that the vacuum expectation value of a normal-product operator
is zero. The contribution of the one-electron part of ĤN in (9.59) vanishes,
since there is no way of contracting all the operators in this term without
using an internal contraction in one normal product. Converting to un-
restricted summations, we then have

∆ECCD = 1
16

∑
ijab

∑
pqrs

〈pq‖rs〉〈0|{p̂†q̂†ŝr̂}{â†b̂†ĵ î}|0〉tab
ij . (9.60)

There are four ways of contracting all the operators between the normal
products in the vacuum expectation value in (9.60), as follows:

〈
0
∣∣∣{p̂†q̂†ŝr̂}{â†b̂†ĵ î} + {p̂†q̂†ŝr̂}{â†b̂†ĵ î}

+ {p̂†q̂†ŝr̂}{â†b̂†ĵ î} + {p̂†q̂†ŝr̂}{â†b̂†ĵ î}
∣∣∣0〉

= δpiδqjδsbδra − δpiδqjδsaδrb − δpjδqiδsbδra + δpjδqiδsaδrb .

This results in four equal contributions to the sums, removing one factor 1
4 :

∆ECCD = 1
4

∑
ijab

〈ij‖ab〉tab
ij . (9.61)
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This type of redundancy, in which multiple versions of the same term are
generated, occurs often in the algebraic derivation but is removed automat-
ically in the diagrammatic derivation.

Next we turn to the amplitude equation (9.46). The first term is the same
as (9.60) without the 1

4

∑
ijab sum and without the amplitude factor, giving

the same result as (9.47). The linear term is given by (9.48) and, with the
normal-product Hamiltonian given by (9.58), we obtain

L =
∑
k>l
c>d

〈Φab
ij |ĤN|Φcd

kl 〉tcdkl = 1
4

∑
klcd

〈Φab
ij |F̂N + Ŵ |Φcd

kl 〉tcdkl

= L1 + L2 . (9.62)

The decomposition of L in (9.62) is not the same as in the configuration-
space derivation (9.48), not only because of the incorporation of L0 into
L1 but also because the cancellations between contributions to different
components of L in (9.48) are incorporated at the outset by the use of
normal-product operators in (9.62).

The one-particle part of L is

L1 = 1
4

∑
klcd

∑
pq

fpq〈0|{̂i†ĵ†b̂â}{p̂†q̂}{ĉ†d̂† l̂k̂}|0〉tcdkl . (9.63)

To contract all operators between the different normal products in the vac-
uum expectation value, we must form three contractions between the first
and third normal products and one contraction each between the first and
second and between the second and third. There are 16 valid ways of ac-
complishing these contractions, four of which are

〈
0
∣∣∣{̂i†ĵ†b̂â}{p̂†q̂}{ĉ†d̂† l̂k̂} + {̂i†ĵ†b̂â}{p̂†q̂}{ĉ†d̂† l̂k̂}

+ {̂i†ĵ†b̂â}{p̂†q̂}{ĉ†d̂† l̂k̂} + {̂i†ĵ†b̂â}{p̂†q̂}{ĉ†d̂† l̂k̂}
∣∣∣0〉

= δikδjlδbdδapδcq + δikδjlδacδbpδdq − δikδjqδlpδacδbd − δiqδkpδjlδacδbd .

Substituting this result into the sums in (9.63) gives∑
c

fact
cb
ij +

∑
d

fbdt
ad
ij −

∑
l

fljt
ab
il −

∑
k

fkit
ab
kj .

The other 12 terms are obtained by interchanging the termination points
of the contractions connecting to the particle creation operators ĉ† and d̂†

and/or to the hole annihilation operators k̂ and l̂. In each case we obtain
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contributions that are equal to the above four terms, canceling the factor
1
4 in (9.63). Changing the dummy summation indices in some terms and
permuting some indices gives the final result,

L1 = −
∑

c

(fact
bc
ij − fbct

ac
ij ) −

∑
k

(fjkt
ab
ik − fikt

ab
jk)

= (εa + εb − εi − εj)tab
ij +

∑
c

(fo
bct

ac
ij − fo

act
bc
ij ) +

∑
k

(fo
ikt

ab
jk − fo

jkt
ab
ik ) .

(9.64)

For the two-particle part of the linear term we have to evaluate

L2 = 1
16

∑
pqrs

∑
klcd

〈pq‖rs〉〈0|{ĵ† b̂̂i†â}{p̂†q̂†ŝr̂}{ĉ†k̂d̂† l̂}|0〉tcdkl . (9.65)

To obtain valid contractions in this case we must form two contractions
each between the first and second, the first and third and the second and
third normal products. The contractions between the first and third normal
products force identities between two of the ket indices k, l, c, d on the one
hand and two of the bra indices i, j, a, b on the other; they can be used to
classify the terms into three cases, according to whether we contract (a) two
pairs of hole-index operators, (b) two pairs of particle-index operators or (c)
one pair of each type. These contractions in turn determine the types of
remaining contractions involving the second product.

The first and second of these cases can be accomplished in two ways
(for example, contracting î† with k̂ and ĵ† with l̂, or î† with l̂ and ĵ† with
k̂ in the first term), giving rise to equal sums, while the third case can be
accomplished in four equivalent ways (depending on which two ket operators
k̂, l̂, ĉ, d̂ are contracted). Combining the equal sums in each case, we can
write the three types of terms as

L2a = 1
8

∑
pqrs

∑
klcd

〈pq‖rs〉
〈
0
∣∣{̂i†ĵ†b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂†k̂l̂}

∣∣0〉
tcdkl

= 1
8

∑
pqrs

∑
cd

〈pq‖rs〉〈0|{b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂†}|0〉tcdij , (9.66)

L2b = 1
8

∑
pqrs

∑
klcd

〈pq‖rs〉
〈
0
∣∣{̂i†ĵ†b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂† l̂k̂}∣∣0〉

tcdkl ,

= 1
8

∑
pqrs

∑
kl

〈pq‖rs〉〈0|{̂i†ĵ†}{p̂†q̂†ŝr̂}{l̂k̂}|0〉tab
kl , (9.67)
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L2c = 1
4

∑
pqrs

∑
klcd

〈pq‖rs〉
〈
0
∣∣∣{̂i†ĵ†b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂† l̂k̂}

+ {̂i†ĵ†b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂† l̂k̂}

+ {̂i†ĵ†b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂† l̂k̂}

+ {̂i†ĵ†b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂† l̂k̂}
∣∣∣0〉

tcdkl

= 1
4

∑
pqrs

∑
kc

〈pq‖rs〉
[
〈0|{ĵ†b̂}{p̂†q̂†ŝr̂}{ĉ†k̂}|0〉tac

ik

− 〈0|{̂i†b̂}{p̂†q̂†ŝr̂}{ĉ†k̂}|0〉tac
jk

− {ĵ†â}{p̂†q̂†ŝr̂}{ĉ†k̂}|0〉tbcik

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{ĉ†k̂}|0〉tbcjk
]
. (9.68)

The signs for all these terms can be determined by the number of inter-
changes needed to bring the contracted operators out in front of the remain-
ing normal products.

The vacuum expectation value in L2a can be evaluated as

〈
0
∣∣{b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂†} + {b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂†}

+ {b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂†} + {b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂†}
∣∣0〉

= δbqδapδdsδcr − δbqδapδcsδdr − δbpδaqδdsδcr + δbpδaqδcsδdr ,

where the parity of the number of intersections between the contraction
lines determines the sign of each term. Substituting this result into the
summations and rearranging the indices in each case to obtain the same
order, 〈ab‖cd〉, we get four equal terms, so that

L2a = 1
2

∑
cd

〈ab‖cd〉tcdij . (9.69)
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A similar procedure for the second component of L2 results in

L2b = 1
2

∑
kl

〈kl‖ij〉tab
kl . (9.70)

For the third component of L2, each of the four terms in (9.68) can be fully
contracted in four ways. Taking the first term as an example, the vacuum
expectation value for this term becomes

〈
0
∣∣∣{ĵ†b̂}{p̂†q̂†ŝr̂}{ĉ†k̂} + {ĵ†b̂}{p̂†q̂†ŝr̂}{ĉ†k̂}

+ {ĵ†b̂}{p̂†q̂†ŝr̂}{ĉ†k̂} + {ĵ†b̂}{p̂†q̂†ŝr̂}{ĉ†k̂}
∣∣∣0〉

= δbpδcsδjrδkq − δbpδcrδjsδkq − δbqδcsδjrδkp + δbqδcrδjsδkp .

Again substituting this result into the summations and rearranging the in-
dices in each case to obtain the same order, in this case 〈bk‖cj〉, we get four
equal terms, giving −〈bk‖cj〉tac

ik . Applying the same procedure to the other
three terms results in

L2c = −
∑
kc

(
〈bk‖cj〉tac

ik − 〈bk‖ci〉tac
jk − 〈ak‖cj〉tbcik + 〈ak‖ci〉tbcjk

)
. (9.71)

Adding up all the components of L = L1 +L2a +L2b +L2c, we get the same
result as in the configuration-space derivation, (9.52).

Turning to the quadratic term, only the two-electron part of ĤN will
enable the eight creation or annihilation operators of the ket quadruple-
excitation configuration to be fully contracted. Thus we need to evaluate

Q = 1
8

∑
pqrs

∑
k>l
c>d

∑
m>n
e>f

〈pq‖rs〉〈0|{̂i†ĵ†b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂† l̂k̂}{ê†f̂ †n̂m̂}|0〉tcdkl t
ef
mn .

(9.72)

No nonzero contractions are possible between the third and fourth normal
products in (9.72) and thus, to obtain nonzero contributions, four of the eight
operators in the third and fourth normal products have to be contracted with
the first product, and the remaining four with the second product.

We shall first consider the case in which the four operators of the first
product are contracted with the four operators of the fourth. This term,
and the similar one in which the four contractions are between the first
and third normal products, represent unlinked contributions since the set
of contractions involving the first normal product is decoupled from the set
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involving the second. Considering the inequalities in the restricted summa-
tions over m, n, e, f and the restriction i > j, a > b, the contractions between
the first and fourth products can be accomplished in only one way:

1
8

∑
pqrs

∑
k>l
c>d

∑
m>n
e>f

〈pq‖rs〉
〈
0
∣∣∣{̂i†ĵ†b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂† l̂k̂}{ê†f̂ †n̂m̂}

∣∣∣0〉
tcdkl t

ef
mn

= 1
8

∑
pqrs

∑
k>l
c>d

〈pq‖rs〉〈0|{p̂†q̂†ŝr̂}{ĉ†d̂† l̂k̂}|0〉tcdkl t
ab
ij .

Contracting the remaining operators in the four ways that are possible gives
four equal contributions, and results in

1
2

∑
k>l
c>d

〈kl‖cd〉tcdkl t
ab
ij .

The same result is obtained (after renaming the summation indices) for the
case in which the four operators of the first product are contracted with
those in the third product, thus canceling the factor 1

2 for the total unlinked
contribution. Comparing this result with (9.61), we see that it is equal to
∆ECCDtab

ij , and so cancels with the r.h.s. of the amplitude equations, (9.46),
as we have already seen in the configuration-space derivation.

The remaining terms in the quadratic contribution fall into four classes,
depending on the pattern of contractions of the first normal product. In
class (a) the two hole operators of the first product are contracted with
either the third or the fourth product (i.e. î† and ĵ† are contracted with
k̂ and l̂, respectively, or with m̂ and n̂, respectively, using ordered sums)
while the two particle operators are contracted with the fourth or third
product, respectively. These two types of contraction produce equal results,
canceling a factor 1

2 . Then converting to unrestricted summations adds a
factor 1

4 , which is later canceled by the four equivalent ways of contracting
the remaining operators, giving

Qa = 1
16

∑
pqrs

∑
klcd

〈pq‖rs〉〈0|{p̂†q̂†ŝr̂}{l̂k̂}{ĉ†d̂†}|0〉tcdij tab
kl

= 1
4

∑
klcd

〈kl‖cd〉tcdij tab
kl . (9.73)

In class (b) one hole and one particle operator of the first normal product
are contracted with operators in the third product, while the remaining
two operators are contracted with operators in the fourth. Converting to
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unrestricted summations, which introduces an additional factor 1
16 , we find

that there are 64 choices for these contractions. Specifically, there are four
ways for î† and â to be contracted with operators in the third product while
ĵ† and b̂ can be contracted with operators in the fourth product in four ways,
giving 16 equal terms; contracting î† and â with operators in the fourth
product while ĵ† and b̂ are contracted with operators in the third product
give 16 more terms equal to the above, for a total of 32 equal terms. Another
set of 32 equal terms is obtained by contracting î† and b̂ with operators in
the third product while ĵ† and â are contracted with operators in the fourth
product, or vice versa. In total, after renaming the summation indices and
performing the remaining contractions we get

Qb = 1
4

∑
pqrs

∑
klcd

〈pq‖rs〉〈0|{p̂†q̂†ŝr̂}{ĉ†k̂}{d̂† l̂}|0〉(tac
ik tbdjl − tbcikt

ad
jl )

=
∑
klcd

〈kl‖cd〉(tac
ik tbdjl − tbcikt

ad
jl ) =

∑
klcd

〈kl‖cd〉(tac
ik tbdjl + tbdik tac

jl ) , (9.74)

where in the final expression we have interchanged the summation indices
c, d in the second term, necessitating a change of sign to restore them to
their original order in the antisymmetric integral.

In classes (c) and (d) three operators of the first normal product are con-
tracted with operators in the third product and one with an operator in
the fourth, or vice versa. In class (c) the set of three operators in the first
product consists of two particle operators and one hole operator while in
class (d) it consists of one particle operator and two hole operators. Fur-
thermore, each case can be generated in two distinct ways, depending on
whether the set of three operators is î†âb̂ or ĵ†âb̂ for (c) and î†ĵ†â or î†ĵ†b̂
for (d). There are 16 possibilities in each case: the set of three operators in
the first product can be contracted with operators in the third or the fourth
product, and in each case these three contractions can be done in four ways,
while the remaining single contraction can be chosen in two ways. The 16
possibilities lead to equivalent results, canceling the factor 1

16 obtained by
converting to unrestricted summations. As an example, the first Qc term
can be written in the form

1
8

∑
pqrs

∑
klcd

∑
mnef

〈pq‖rs〉〈0|{̂i†ĵ†b̂â}{p̂†q̂†ŝr̂}{ĉ†d̂† l̂k̂}{ê†f̂ †n̂m̂}|0〉tcdkl t
ef
mn

= −1
8

∑
pqrs

∑
klcd

〈pq‖rs〉〈0|{p̂†q̂†ŝr̂}{ĉ†d̂†k̂}{l̂}|0〉tcdkjt
ab
li .
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The sign reflects the odd number of interchanges needed to move all the
contracted operators to the front in pairs (note that the summation index
m is changed to l after the contraction). The remaining operators can be
contracted in four ways:

〈
0
∣∣∣{p̂†q̂†ŝr̂}{ĉ†d̂†k̂}{l̂} + {p̂†q̂†ŝr̂}{ĉ†d̂†k̂}{l̂}

+ {p̂†q̂†ŝr̂}{ĉ†d̂†k̂}{l̂} + {p̂†q̂†ŝr̂}{ĉ†d̂†k̂}{l̂}
∣∣∣0〉

= δplδqkδrdδsc − δpkδqlδrdδsc − δplδqkδrcδsd + δpkδqlδrcδsd .

All four terms produce the same value for the sum, and after exchanging
and rearranging some of the indices we get

−1
2

∑
klcd

〈kl‖cd〉tab
ik tcdjl .

Similarly, for the second term of Qc we have

−1
2

∑
klcd

〈kl‖cd〉tcdik tab
jl

and these two terms add up to

Qc = −1
2

∑
klcd

〈kl‖cd〉(tab
ik tcdjl + tcdik tab

jl ) . (9.75)

Similar treatment of case (d) gives

Qd = −1
2

∑
klcd

〈kl‖cd〉(tac
ij tbdkl + tbdij tac

kl ) . (9.76)

When all the different parts of Q are put together, we get the result (9.54).
The algebraic derivation just presented is fairly laborious, but it serves to

demonstrate many potential simplifications that are incorporated naturally
in the diagrammatic derivation. In Section 9.4 below we will introduce dia-
grams for the general cluster operators as part of the formal introduction of
the exponential Ansatz and will show their relationship to the diagrams of
MBPT. In subsequent developments we will derive all expressions diagram-
matically. In particular, the CCD equations are rederived diagrammatically
in Section 9.5. Comparisons with the configuration-space derivation (sub-
section 9.3.1) and algebraic derivation (subsection 9.3.2) can then be readily
made.
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9.4 Exponential Ansatz and the linked-diagram theorem
of MBPT

In this section we explore the relationship between the CC and MBPT wave-
function expansions and show that the CC form of the wave function can
actually be derived from the infinite-order MBPT expansion. This relation-
ship demonstrates that the various CC models can be viewed as infinite-order
summations of selected classes of MBPT diagrams.

The linked-diagram form of the MBPT wave function, (6.10), is

ΨMBPT =
∞∑

n=0

(R̂0V̂N)n|0〉L = Φ0 + Ψ(1) + Ψ(2) + · · · , (9.77)

where the superscripts indicate the order in V̂N and where V̂N = F̂ o
N + Ŵ

(noting that ĤN = (Ĥ0)N + V̂N).
The individual orders of Ψ can be written in terms of the antisymmetrized

wave-function diagrams in the form (omitting arrows except where they are
needed to avoid ambiguity)

Ψ(1) = +
×

, (9.78)

Ψ(2) =

1

+

2

+

3

+

4

+

5

+

6

+

7

+

8

+ ×

9

+ ×

10

+
×

11

+
×

12

+ ×

13

+
×

14

+
×
×

15

+
×
×

16

+
×

×

17

+ ×

18

+
×

19
(9.79)

etc. Only linked diagrams have been included, as required. Diagrams 8, 17,
18 and 19 above are disconnected but, since they have no closed disconnected
parts, they are linked, by definition.

We can gather together classes of linked diagrams by the number r of
disconnected parts that they contain. Thus r = 1 includes all possible
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connected wave-function diagrams. We can represent this class formally by
a connected operator T̂ ,

T̂ |0〉 =
∞∑

n=1

(R̂0V̂N)n|0〉C. (9.80)

The sum extends over all connected wave function diagrams in all orders.
We may further classify the connected diagrams belonging to the operator
T̂ by the number m of pairs of external lines they contain, up to N (the
number of electrons),

T̂ =
N∑

m=1

T̂m . (9.81)

Here T̂m is an operator that creates m pairs of hole–particle lines,

T̂m =
1

(m!)2
∑

i1i2...im
a1a2...am

〈a1a2 · · · am|t̂m|i1i2 · · · im〉A{â †
1 â †

2 · · · â †
mîm · · · î2î1}

=
1

(m!)2
∑

i1i2...im
a1a2...am

ta1a2...am
i1i2...im

{â †
1 î1â

†
2 î2 · · · â †

mim · · · } , (9.82)

with antisymmetrized amplitudes 〈a1a2 · · · am|t̂m|i1i2 · · · im〉A = ta1a2...am
i1i2...im

=
−ta1a2...am

i2i1...im
= · · · . In particular,

T̂2 = 1
4

∑
ijab

tab
ij {â†îb̂†ĵ} , (9.83)

where tab
ij = −tab

ji = −tbaij = tbaji . We represent the T̂m operators diagram-
matically by

T̂1 = , (9.84)

T̂2 = , (9.85)
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T̂3 = = , (9.86)

T̂4 = = , (9.87)

etc. (Strictly speaking, these diagrams represent T̂m|0〉.) Note the use of
solid horizontal lines to represent the T̂m operators, instead of the broken
lines used for interaction vertices. The second designation for T̂3 and T̂4

emphasizes that all particle–hole pairs are equivalent, a fact which is not
obvious in the first form since the middle pairs appear to be diagrammat-
ically different. We shall use the first designation, with the understanding
that all pairs are equivalent. Other variations of these forms have been used,
including

, and .

A product of these cluster operators is represented simply by putting the
corresponding T̂m diagrams side by side, as in the following example (the
left–right order is immaterial):

T̂1T̂2 = T̂2T̂1 = . (9.88)

Each T̂m diagram represents a sum of perturbation theory connected wave
function diagrams, such as the connected diagrams in (9.78) and (9.79) but
extending to all orders. We classify these contributions to each T̂m in terms
of the order of perturbation theory in which they occur, i.e. in terms of the
number of interaction lines (vertices) they contain,

T̂m =
∞∑

n=1

T̂ (n)
m ,

T̂ (n)
m |0〉 =

{
(R̂0V̂N)n|0〉

}
C,m

,

(9.89)

where the subscripts in the last form indicate a restriction to nth-order
connected diagrams with m external hole–particle line pairs. The order-by-
order expansion of the T̂m operator implies a corresponding expansion for
the amplitudes,

ta1a2...am
i1i2...im

=
∞∑

n=1

t
a1a2...am (n)
i1i2...im

. (9.90)
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The operator T̂
(n)
m can be represented by a T̂m diagram with subscript n, as

in

(1)
= (9.91)

for T̂
(1)
2 ; this diagram implies that

t̂
ab (1)
ij =

〈ab‖ij〉
εab
ij

(9.92)

(compare (5.15) and (9.83)).
The initial few terms, including the first- and second-order contributions,

in the expansion of T̂1, T̂2 and T̂3 in terms of MBPT diagrams are given in
the following equations (as before, arrows are omitted except as needed to
avoid ambiguity):

T̂1|0〉 = = (T̂ (1)
1 + T̂

(2)
1 + T̂

(3)
1 + · · · )|0〉

=
×

+ + +
×

+ × +
×
× +

×
× + · · · , (9.93)

T̂2|0〉 = = (T̂ (1)
2 + T̂

(2)
2 + T̂

(3)
2 + · · · )|0〉

= + + +

+
×

+
×

+ × + × + · · · , (9.94)

T̂3|0〉 = = (T̂ (2)
3 + T̂

(3)
3 + · · · )|0〉

= + + · · · . (9.95)

The first class of disconnected diagrams has r = 2 and consists of diagrams
with two disconnected parts. Four such diagrams, 8, 17, 18, 19, are seen
in (9.79). Using the factorization theorem (see Section 6.1) we can show
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that the sum of all r = 2 diagrams can be expressed as the square of the T̂

operator:

1
2 T̂ 2 = 1

2

(∑
m

T̂m

)2
= 1

2

∑
m

(T̂m)2 +
∑
m>n

T̂mT̂n . (9.96)

To illustrate this, for m = 2, r = 2 in first order we have

=
1
2

(
+

)
,

=
1
2

( )2

= 1
2

(
T̂

(1)
2

)2
. (9.97)

The first equality in (9.97) is due to the fact that the left–right order in the
diagram is immaterial, and the second can be shown algebraically by insert-
ing summation labels and bringing the resulting expressions to a common
denominator, as in the proof of the factorization theorem:

(i) (a) (b) (j)
(k) (c) (d) (l)

=
1
16

∑ 〈ab‖ij〉〈cd‖kl〉
εab
ij εabcd

ijkl

{â†îb̂†ĵ}{ĉ†k̂d̂† l̂} ,

(k) (c) (d) (l)
(i) (a) (b) (j)

=
1
16

∑ 〈ab‖ij〉〈cd‖kl〉
εabcd
ijkl εcd

kl

{â†îb̂†ĵ}{ĉ†k̂d̂† l̂} .

Bringing these two expressions to a common denominator, adding them and
then noting that εab

ij + εcd
kl = εabcd

ijkl gives the desired result,

+

=
1
16

∑ 〈ab‖ij〉〈cd‖kl〉
εab
ij εcd

kl

{â†îb̂†ĵ}{ĉ†k̂d̂† l̂}

= 1
16

∑
t
ab (1)
ij t

cd (1)
kl {â†îb̂†ĵ}{ĉ†k̂d̂† l̂}

=
(
T̂

(1)
2

)2
.
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Fig. 9.1. Third-order disconnected wave function skeletons.

This derivation provides a simple illustration of how the factorization the-
orem is manifested in the amplitudes of T̂ and of how it is related to the
exponential Ansatz of coupled-cluster theory.

Next we proceed to consider third-order disconnected contributions. All
third-order disconnected wave-function skeletons are shown in Fig. 9.1. Each
of skeletons 1–8 represents a single diagram while skeletons 9–14 represent
three diagrams each, with three distinct arrow orientations, corresponding to
the particle–particle, hole–hole and particle–hole cases for the second vertex
in the left-hand part of the diagram. For each arrow orientation the sum
of the corresponding diagrams originating in skeletons 9, 10 and 11 can be
written in the form

S9,10,11 =
∑

ijklmn
abcdef

{
N

εab
ij εcd

klε
cdef
klmn

+
N

εab
ij εabef

ijmnεcdef
klmn

+
N

εef
mnεabef

ijmnεcdef
klmn

}
,

(9.98)
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where N is the numerator containing the integrals and operators. This
numerator is different for the different arrow orientations, (9.98) but in each
case it is the same for the three terms in the sum. Introducing a common
denominator, we get

S9,10,11 =
∑

N

[
1

εab
ij εcd

klε
cdef
klmn

+
1

εabef
ijmnεcdef

klmn

(
1

εab
ij + εef

mn

)]

=
∑

N

[
1

εab
ij εcd

klε
cdef
klmn

+
1

εab
ij εef

mnεcdef
klmn

]

=
∑ N

εab
ij

[
1

εcdef
klmn

(
1

εcd
kl + εef

mn

)]
=

∑ N

εab
ij εcd

klε
ef
mn

. (9.99)

Adding up this result for the three arrow orientations gives the product
T̂

(2)
2 T̂

(1)
2 (the T̂

(1)
2 factor is the same for all three orientations), which is a

component of 1
2(T̂2)2.

For an r = 3 example we consider skeleton 1 in Fig. 9.1, which generates a
single diagram with just one distinct time order. Using a procedure similar
to that for the quadratic term in (9.97), this diagram can be factored by
splitting it into six equal contributions and labeling its lines in six different
ways:

S1 =
1
6

∑
ijklmn
abcdef

{
〈ab‖ij〉〈kl‖cd〉〈mn‖ef〉

εab
ij εabcd

ijkl εabcdef
ijklmn

+
〈ab‖ij〉〈mn‖ef〉〈kl‖cd〉

εab
ij εabef

ijmnεabcdef
ijklmn

+
〈kl‖cd〉〈ab‖ij〉〈mn‖ef〉

εcd
klε

abcd
klij εabcdef

ijklmn

+
〈kl‖cd〉〈mn‖ef〉〈ab‖ij〉

εcd
klε

efcd
mnklε

abcdef
ijklmn

+
〈mn‖ef〉〈ab‖ij〉〈kl‖cd〉

εef
mnεabef

ijmnεabcdef
ijklmn

+
〈mn‖ef〉〈kl‖cd〉〈ab‖ij〉

εef
mnεcdef

klmnεabcdef
ijklmn

}
R̂ ,

(9.100)

where R̂ is a product of creation and annihilation operators. Again, the
numerators are all equal. Bringing the six terms to a common denominator,
this sum can be factored as
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S1 =
1
6

∑ N

εabcdef
ijklmn

(
1

εab
ij εabcd

ijkl

+
1

εab
ij εabef

ijmn

+
1

εcd
klε

abcd
klij

+
1

εcd
klε

cdef
klmn

+
1

εef
mnεabef

ijmn

+
1

εef
mnεcdef

klmn

)

=
1
6

∑ N

εabcdef
ijklmn

(
1

εab
ij εcd

kl

+
1

εab
ij εef

mn

+
1

εef
mnεcd

kl

)

=
1
6

∑ N

εabcdef
ijklmn

(
εef
mn + εcd

kl + εab
ij

εab
ij εcd

klε
ef
mn

)
=

1
3!

∑ N

εab
ij εcd

klε
ef
mn

. (9.101)

The latter, of course, represents 1
3!(T̂

(1)
2 )3.

All other disconnected terms in ΨMBPT are similarly obtained as products
of T̂m operators. This observation leads us to the deduction that the sum
of all linked wave-function diagrams of all orders containing r disconnected
parts is given by 1

r! T̂
r|0〉. This result can be proved inductively by first

showing that it is correct for r = 2 and then showing that if it is correct for
some value of r it is also correct for r +1. The details are left as an exercise
for the reader.

Since the Taylor series expansion of the exponential of the connected part
is eT̂ |0〉 =

(
1+ T̂ + 1

2 T̂ 2 + 1
3! T̂

3 + · · ·
)
|0〉, we can deduce that, in the infinite-

order limit,

ΨMBPT = eT̂ |0〉 . (9.102)

An important point to note is that while MBPT diagrams carry energy
denominators, in CC diagrams at least some denominators are hidden in
the amplitudes, as seen, for example in (9.92). Thus, in (9.101), the final
expression corresponds to

1
3!

∑
t
ab(1)
ij t

cd(1)
kl tef(1)

mn {â†îb̂†ĵ}{ĉ†k̂d̂† l̂}{ê†m̂f̂ †n̂} .

9.5 Diagrammatic derivation of the CCD equations

The diagrammatic derivation of the coupled-cluster equations makes use of
the diagrammatic form of the Hamiltonian (Chapter 4) and of the clus-
ter operators (Section 9.4). Underlying this development is the gener-
alized Wick’s theorem, which simplifies the evaluation of contractions of
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normal-ordered operators. We use the normal-ordered Hamiltonian, as given
in (9.57), (9.58), and the normal-product form of the Schrödinger equation,

ĤNΨ = ∆EΨ , (9.103)

where ĤN = F̂N + Ŵ .
Following (4.16), the one-electron part of the Hamiltonian is represented

diagrammatically as

F̂N =
∑
ab

b

a
×

fab{â†b̂}

+
∑
ij

j

i
×

fij {̂i†ĵ}

+
∑
ai

i a ×

fai{â†î}

+
∑
ia

i a
×

fia{̂i†â}

(9.104)

(the algebraic interpretation is given below each diagram). Note that in the
HF case the last two sums in (9.104) vanish because of the block-diagonal
nature of f̂ . Using the implicit summation convention for unlabeled lines, as
in (4.19), and omitting nonessential arrows, this equation is written simply
in the form

F̂N = ×+ ×+ ×+ × .

(0) (0) (+1) (−1)
(9.105)

The numbers below each diagram denote the excitation level represented
by this diagram, i.e. the excess of particle–hole open-line pairs at the top
over the number of such pairs at bottom. Note that here the vertex ×
represents the full F̂N operator, unlike in perturbation theory where it rep-
resents just the off-diagonal part F̂ o

N.
The two-electron operator (subsection 4.4.6) is similarly represented as

Ŵ =
1
4

∑
abcd

c

a

d

b
+

1
4

∑
ijkl

k

i

l

j
+

∑
ijab

b

a j

i

〈ab‖cd〉{â†b̂†d̂ĉ} 〈ij‖kl〉{̂i†ĵ† l̂k̂} 〈ai‖bj〉{â†î†ĵb̂}

+
1
2

∑
abci

c

a i b
+

1
2

∑
ijka

j

i

k a
+

1
2

∑
abci

b

a

i c

〈ab‖ci〉{â†b̂†îĉ} 〈ia‖jk〉{̂i†â†k̂ĵ} 〈ai‖bc〉{â†î†ĉb̂}
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+
1
2

∑
ijka

k

i j a
+

1
4

∑
abij

i a j b
+

1
4

∑
ijab

i a j b.
.

〈ij‖ka〉{̂i†ĵ†âk̂} 〈ab‖ij〉{â†b̂†ĵ î} 〈ij‖ab〉{̂i†ĵ†b̂â}

(9.106)

In terms of unlabeled diagrams and with the usual rules for the assignment
of weight factors, this operator takes the form

Ŵ = + +

(0) (0) (0)

+ + + +

(+1) (+1) (−1) (−1)

+ + ;

(+2) (−2)

(9.107)

the excitation level is indicated below each diagram.
To complete the representation of the CCD equations, we need to combine

the Hamiltonian diagrams with the diagrams that represent the T̂2 operator,

T̂2 = =
1

(2!)2
∑
ijab

tab
ij {â†îb̂†ĵ} . (9.108)

The CCD energy (see (9.59)) is given by

∆ECCD = 〈0|ĤNT̂2|0〉 . (9.109)

The diagrammatic representation of this equation must begin and end with
the Fermi vacuum state, i.e. no open lines should remain after the contrac-
tion of the ĤN and T̂2 operators. Put another way, the net excitation level
of the energy diagrams should be zero. With T̂2 represented by (9.108),
which has excitation level +2, we should contract it only with those dia-
grams from the representation of the Hamiltonian, (9.105), (9.107), which
have excitation level −2. The only such term is . Therefore

∆ECCD = , (9.110)
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which is just like the expression for the MBPT(2) energy except that we
have a solid line instead of a broken line at the bottom of the diagram.
The rules for the interpretation of this closed diagram are effectively the
same as in MBPT (but without a denominator), with the addition of the
interpretation of the solid line according to (9.108), giving

∆ECCD = 1
4

∑
ijab

〈ij‖ab〉tab
ij . (9.111)

Apart from the absence of a denominator, the usual interpretation rules
apply to this diagram. The ascending and descending lines are assigned
arbitrary particle and hole labels, respectively. The matrix element 〈ij‖ab〉
corresponds to the top vertex i a jb , in the order left–out, right–out,
left–in, right–in, and the tab

ij amplitude corresponds to the bottom vertex,

i a jb . The factor 1
4 is due to the fact that the diagram has two sets

of equivalent lines, and the positive sign arises from the factor (−1)h+l, as
there are two hole lines and two loops.

The numerical factors are automatically accounted for in the diagram-
matic notation, avoiding redundant terms, while the second-quantized alge-
braic derivation usually retains the redundancy. Other than this redundancy
and the corresponding numerical factors, there is a one-to-one correspon-
dence between the diagrams and the contractions of the second-quantized
operators as evaluated using the generalized Wick’s theorem (see subsec-
tion 9.3.2). When in doubt about a diagram or its interpretation, it is
recommended that it be derived algebraically as a check.

Now we turn to the CCD amplitude equation (9.46), which we rewrite in
the form

〈ab
ij |ĤN(1 + T̂2 + 1

2 T̂ 2
2 )|0〉 = ∆ECCDtab

ij , (9.112)

using the shorthand notation 〈ab
ij | ≡ 〈Φab

ij |. Obviously, the left-hand side
represents a net double excitation, and the Hamiltonian diagrams used in
the contractions for each term must be chosen to match this requirement.
The first term is simply 〈ab

ij |ĤN|0〉, and the only matching ĤN term is the
+2 diagram , giving the same result as (9.47),

〈ab
ij |ĤN|0〉 = i a jb = 〈ab‖ij〉 . (9.113)

In the linear term, 〈ab
ij |ĤNT̂2|0〉, the T̂2 operator provides a double excita-

tion; thus, to get a net +2 excitation level the only ĤN terms that can be
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added above the T̂2 vertex should have excitation level zero. There are five
such terms:

i a j
(c)
b ×

L1a

+ i a b
j

(k)
×

L1b

+ i
(c)
a

(d)
b

j

L2a

+ a
i

(k)
j

(l)
b

L2b

+ i
(c)
a j

(k)
b

L2c

where the labels in parentheses indicate summation indices. Note that dia-
gram L2c can equally well be drawn as

or

or their mirror images. The fixed labels i, j, a, b in these diagrams corre-
spond to the “target” indices in the bra part of the matrix element in the
amplitude equation. These target labels are paired in the diagram in corre-
spondence with the vertical pairing in the bra function 〈ab

ij |, i with a and j

with b. The pairing can be indicated by imaginary external connections of
the correspondingly labeled lines, creating quasiloops, as in

i
a b

j or i
b a

j .

(These two diagrams are equivalent, as will become clear from the rules of
interpretation.) Internal lines are summed over, so their labels are dummy
labels and are usually omitted. When we include such dummy labels in
the diagram to show a correspondence with the summation indices in the
algebraic expression, as before we place them in parentheses.

The interpretation of these open diagrams introduces a new rule to en-
sure that all distinct terms are included. This rule requires the inclusion
of all distinct permutations of the target indices, i, j, . . . and a, b, . . . , i.e.
permutations of hole labels and of particle labels of inequivalent external
lines. Two external lines are quasi-equivalent if closing the diagram by a
two-particle interaction vertex would make them equivalent; otherwise they
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are inequivalent. For example, in diagram L1a the indices a and b are in-
equivalent while i and j are quasi-equivalent. Consequently, along with the
diagram as given we have to include one in which a is permuted with b; the
total contribution is then expressed by means of the operator

P̂ (ab) = 1̂ − P̂ab , (9.114)

in which P̂ab permutes the labels a and b. This factor is included in the
algebraic interpretation of the diagram,

L1a = P̂ (ab)
∑

c

fbct
ac
ij =

∑
c

fbct
ac
ij −

∑
c

fact
bc
ij . (9.115)

The overall sign is positive, because we have two quasiloops (which are
treated as ordinary loops for the purpose of the sign rule) and two hole
lines. Similarly, in diagram L1b the indices a and b are quasi-equivalent
while i and j are inequivalent. Forming the two external connections, we
have two quasiloops and three hole lines, giving an overall minus sign, so we
get

L1b = −P̂ (ij)
∑

k

fkjt
ab
ik = −

∑
k

fkjt
ab
ik +

∑
k

fkit
ab
jk . (9.116)

The L1a and L1b terms together correspond to term L1, (9.64), of the alge-
braic derivation of subsection 9.3.2 (note that the f̂ operator is symmetric,
fki = fik).

In the case of diagram L2a, a and b are quasi-equivalent and so are i and
j; hence no permutation factor is needed and

L2a = 1
2

∑
cd

〈ab‖cd〉tcdij . (9.117)

The factor 1
2 arises from the fact that the diagram has one pair of equivalent

internal lines, i.e. two lines that connect the same two vertices and go in
the same direction. These factors can also be interpreted as a remnant of
the 1/(m!)2 factor in the definition of the T̂m operator, (9.82), used there to
compensate for the unrestricted summations. The remaining part of such
factors disappears from the amplitude equations because the restriction to
distinct diagrams and the fixed external-line labels in the amplitude equa-
tions eliminate redundant terms (except for the case of equivalent internal
line pairs).

Returning to the interpretation of diagram L2a, inserting imaginary ex-
ternal connections between i and a and between j and b, forming two
quasiloops, and noting the two hole lines, we get a positive sign. If we
had permuted the labels a and b then we would have had one quasiloop,
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resulting in a minus sign, but this sign would have been compensated by a
change of sign of the antisymmetric integral; so the result would have been
the same and no additional distinct term would have been obtained.

The fourth diagram is similar, except that it has four hole lines including
the two internal equivalent lines giving

L2b = 1
2

∑
kl

〈ij‖kl〉tab
kl . (9.118)

The fifth diagram is the most complicated, since the particle–hole in-
teraction eliminates both the equivalence of internal lines and the quasi-
equivalence of external lines, requiring the permutation factor

P̂ (ab|ij) = P̂ (ab)P̂ (ij) = (1̂−P̂ab)(1̂−P̂ij) = 1̂−P̂ab−P̂ij +P̂abP̂ij . (9.119)

There are two quasiloops and three hole lines, so the overall sign is negative
and the diagram is interpreted as

L2c = −P̂ (ij|ab)
∑
kc

〈ak‖cj〉tcbik

= −
∑
kc

(
〈ak‖cj〉tcbik − 〈bk‖cj〉tcaik − 〈ak‖ci〉tcbjk + 〈bk‖ci〉tcajk

)
. (9.120)

The terms L2a, L2b and L2c correspond to the terms (9.69), (9.70) and (9.71)
of the algebraic derivation.

Next we consider the quadratic term, 1
2〈ab

ij |ĤNT̂ 2
2 |0〉. Since T̂ 2

2 corresponds
to quadruple excitations while the target state is a double excitation, we
must use a −2 de-excitation-level diagram from the representation of ĤN.
There is only one such diagram, the last diagram in the representation of the
two-particle part Ŵ , (9.107). This diagram must be attached in all possible
distinct ways to the representation of T̂ 2

2 .
Identifying all the distinct ways in which such connections can be accom-

plished can be difficult, and a systematic way for dealing with this problem
will be presented in Section 10.3. However, we can also use an extension
of the Hugenholtz-diagram approach of MBPT to provide an unambiguous,
easily applied procedure that generates all the combined diagrams and gen-
erates each distinct diagram only once. In this extension each two-particle
vertex is collapsed into a medium dot ( ), as in the MBPT Hugenholtz di-
agrams, while each T̂ vertex is collapsed into a large dot ( ). Thus we need
to combine the diagram elements
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from Ŵ and

for T̂ 2
2 . This combination can be accomplished in five distinct ways:

Qa Qb Qc

Qd Qe

Expanding these into antisymmetric Goldstone-like diagrams, we get

Q = i
j a

b

Qa

+ i
a b

j

Qb

+
i a

b j

Qc

+
a i

j b

Qd

+
i a

b j

Qe

. (9.121)

As always, the detailed expansion of a Hugenholtz diagram is not unique
but the result is the same for all valid expansions. For example, we could
equally well have drawn diagram Qb as

i
a j

b or i
a j

b or i
a j

b

The fifth quadratic-term diagram, Qe, is both disconnected and unlinked
since it has a closed disconnected part. As such it should cancel against some
other unlinked contribution. In fact, it is easy to see that Qe = ∆ECCDtab

ij

and therefore that it cancels with the right-hand side of (9.112), removing
the energy from the amplitude equations.
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The sign factor for diagram Qa is obtained by pairing i with a and j

with b,

i
j a

b ,

resulting in two quasiloops. Combined with the four hole lines, we get
a positive sign. Diagrams Qc and Qd each have two quasiloops plus one
internal loop and four hole lines, resulting in a negative sign.

Diagram Qb introduces our final interpretation rule: an extra factor 1
2 is

required for every pair of equivalent T̂m vertices in the diagram. Two such
vertices are equivalent when they are of the same type (i.e. they have the
same m value) and are connected to the interaction vertex with the same
number (zero or more) of particle lines and the same number of hole lines.
The equivalence of vertices is most easily judged in the Hugenholtz-like form
of the diagram or in terms of the +/− contraction-pattern notation to be
introduced in Section 10.3. The need for this factor 1

2 in diagram Qb can also
be understood from the observation that permuting i with j is equivalent
in this diagram to permuting a with b, so for this case 1

2 P̂ (ij|ab) = P̂ (ij) =
P̂ (ab). The cancellation of the factor 1

2 arising from a pair of equivalent
vertices against a permutation of the labels of two open lines connected to
these two vertices (going in the same direction) is quite general, as will be
seen later in other examples. The factors 1

2 introduced by this rule can be
interpreted as remnants of the inverse factorial coefficients in the power series
expansion of eT̂ , the remainder of these coefficients having been accounted
for by the restriction to distinct diagrams (see e.g. (9.96)).

Applying the rules of interpretation to the four uncanceled quadratic-term
diagrams, we obtain

Qa = 1
4

∑
klcd

〈kl‖cd〉tcdij tab
kl (9.122)

(two pairs of equivalent internal lines, four hole lines and two loops),

Qb = 1
2 P̂ (ij|ab)

∑
klcd

〈kl‖cd〉tac
ik tdb

lj

= P̂ (ij)
∑
klcd

〈kl‖cd〉tac
ik tdb

lj = P̂ (ab)
∑
klcd

〈kl‖cd〉tac
ik tdb

lj (9.123)
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(a pair of equivalent vertices, four hole lines and four loops),

Qc = −1
2 P̂ (ij)

∑
klcd

〈kl‖cd〉tcdkit
ab
lj (9.124)

(one pair of equivalent internal lines, four hole lines and three loops) and

Qd = −1
2 P̂ (ab)

∑
klcd

〈kl‖cd〉tcakl t
db
ij , (9.125)

(one pair of equivalent internal lines, four hole lines and three loops), in
agreement with the results obtained in the algebraic derivation, (9.73)–
(9.76).

The diagrams for all three terms of the CCD amplitude equation (9.112)
(incorporating cancellation of the disconnected diagram against the right-
hand side) are collected in Fig. 9.2. The diagram numbering in this figure
is part of a systematic scheme that will be followed in subsequent CC equa-
tions; the label D refers to the double-excitation amplitude equations. The
final form of the algebraic amplitude equations for CCD is

〈ab‖ij〉 + P̂ (ab)
∑

c

fbct
ac
ij − P̂ (ij)

∑
k

fkjt
ab
ik

+1
2

∑
cd

〈ab‖cd〉tcdij + 1
2

∑
kl

〈kl‖ij〉tab
kl + P̂ (ij|ab)

∑
kc

〈kb‖cj〉tac
ik

+1
4

∑
klcd

〈kl‖cd〉tcdij tab
kl + P̂ (ij)

∑
klcd

〈kl‖cd〉tac
ik tbdjl

−1
2 P̂ (ij)

∑
klcd

〈kl‖cd〉tdc
ik tab

lj − 1
2 P̂ (ab)

∑
klcd

〈kl‖cd〉tac
lk tdb

ij

= 0 (for all i > j, a > b). (9.126)

D1

×

D2a

×

D2b D2c D2d D2e

D3a D3b D3c D3d

Fig. 9.2. Antisymmetrized Goldstone diagrams for the CCD amplitude equations.
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Note that, in consistency with MBPT diagrammatic notation, a resolvent
line and its corresponding denominator is implied above the top interac-
tion line of each open diagram. However, in each CC amplitude equation
these denominators would be the same in all terms, so they may be ig-
nored. They resurface indirectly in the iterative form of the equations, as
in (9.127), (9.128) below, and must be included in the interpretation of the
amplitude iteration diagrams shown in Fig. 9.3.

In terms of perturbation theory, the diagonal elements of f̂ are chosen
here as part of Ĥ0 while all other one- and two-electron matrix elements are
part of the perturbation. We therefore set up an iterative scheme for the
solution of the equations by separating the diagonal parts out of the second
and third terms and moving them to the opposite side of the equation (the
remaining off-diagonal parts vanish in the canonical HF case). Using fii = εi

etc. we then have, symbolically,

(εi + εj − εa − εb)tab
ij = 〈ab‖ij〉 + L(t) + Q(tt) . (9.127)

The first approximation is to neglect L(t) and Q(tt) and choose

t
ab (1)
ij =

〈ij‖ab〉
εi + εj − εa − εb

=
〈ij‖ab〉

εab
ij

. (9.128)

When inserted into the energy formula this gives the usual MBPT(2) en-
ergy. Inserting this approximation into L(t) while neglecting Q(tt) provides
t
ab (2)
ij and the MBPT(3) energy as the next-order contributions. Insert-

ing t
ab (1)
ij into Q(tt) generates the quadruple-excitation MBPT(4) energy

contributions, and inserting t
ab (2)
ij into L(t) provides the double-excitation

MBPT(4) energy contributions.
Figure 9.3 illustrates this process diagrammatically, using the canonical

Hartree–Fock case for simplicity. The correspondence of the energy contri-
butions with the MBPT energy terms can be seen (compare Chapter 5). A
systematic procedure for generating all the relevant diagrams will be pre-
sented later, in Section 10.3, but in the meantime we will briefly consider
the generation of the fourth-order energy diagrams from the third-order
wave-function diagrams in Fig. 9.3.

We obtain the fourth-order energy diagrams on closing each of the seven
diagrams contributing to T̂

(3)
2 by contracting it with a Hamiltonian vertex

above it. As noted previously, the only Hamiltonian vertex that can be
used in this case is the −2 vertex . When this vertex is contracted
with each of the three diagrams containing second-order T̂2 vertices, and the
T̂

(2)
2 vertex is expanded in turn in terms of compatible second-order MBPT
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(1)
=

∆E(2) =
(1)

=

(2)
=

(1)
+

(1)
+

(1)

∆E(3) =
(2)

= + +

(3)
=

(2)
+

(2)
+

(2)
+

(1) (1)

+
(1) (1)

+
(1) (1)

+
(1) (1)

∆E(4) =
(3)

= + + + + +

+ + + + + +

+ + + +

+ + +

Fig. 9.3. Diagrammatic description of an iteration scheme for the solution of the
CCD equations and its relationship to MBPT energies through the fourth-order
energy (for the canonical Hartree–Fock case).

wave-function diagrams, we obtain in order the first three, the next three
and the next six contributions to ∆E(4) shown in Fig. 9.3, all of which are
double-excitation fourth-order energy contributions. When we contract the
Hamiltonian vertex with the four (T̂ (1)

2 )2 diagrams contributing to T̂
(3)
2 we
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obtain, in order, the next two, the next one, the next two and the last two
fourth-order MBPT energy diagrams, all of which are quadruple-excitation
contributions. Comparing with the MBPT results in Section 5.7, we see that
all double-excitation and quadruple-excitation ∆E(4) diagrams have been
accounted for but that the single-excitation and triple-excitation contribu-
tions are missing. We can therefore state that in the Hartree–Fock case, in
which the second- and third-order MBPT energies contain double-excitation
contributions only, CCD is correct through third order in the energy and
first order in the wave function.

In order to estimate the computational cost of solving the CCD equations,
let nh be the number of hole states (occupied spinorbitals) and np be the
number of particle states. (Spin summations, as discussed in Chapter 7, can
effectively reduce these numbers by up to a factor 2.) Normally np � nh, so
that the most expensive linear term arises from diagram L2a, which contains
four particle labels and two hole labels. The computational cost of this term
is therefore proportional to n 2

hn 4
p per iteration, the same cost as for CISD

and (without the iteration factor) for the third-order MBPT energy.
Although the quadratic terms have more indices, they can be summed in

stages (analogously to the quadruple-excitation contributions to the fourth-
order MBPT energy, as shown in Section 7.1), by considering one amplitude
at a time. Taking diagram Qb, (9.123), as an example, the procedure cor-
responds to evaluating

Sad
il =

∑
kc

〈kl‖cd〉tac
ik , Qb = P̂ (ij)

∑
ld

Sad
ik tdb

lj , (9.129)

i.e. two n 3
hn 3

p processes. Thus the quadratic terms do not change the overall
dependence of the computational cost on the number of spinorbitals. We
refer to CCD as, roughly speaking, an n6 process.
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Systematic derivation of the coupled-cluster
equations

10.1 The connected form of the CC equations

Before deriving additional coupled-cluster equations, such as the equations
for the coupled-cluster singles and doubles (CCSD) model, we shall introduce
an elegant and more convenient procedure than the heuristic approach that
we have used to derive the CCD equations. While somewhat less transparent
than the heuristic approach it is more powerful and compact, arrives at
the cancellation of the energy in all the amplitude equations very easily
at the outset and adds the connectedness condition for the CC amplitude
equations.

The normal-product form of the Schrödinger equation for a general CC
wave function can be written in the form

(ĤN − ∆E)eT̂ |0〉 = 0 . (10.1)

We operate on this equation from the left with e−T̂ and obtain

(e−T̂ ĤNeT̂ − ∆E)|0〉 = 0 . (10.2)

We have thus obtained a non-Hermitian similarity-transformed Hamilto-
nian,

H = e−T̂ ĤNeT̂ , (10.3)

which has |0〉 as a right eigenfunction and ∆E as the corresponding eigen-
value. This operator is commonly referred to as the CC effective Hamilto-
nian, often using the symbol H (“H-bar”), but it should not be confused
with the effective Hamiltonian Ĥeff of the Bloch equations, as used in QDPT
(Chapter 8) and MRCC (Chapter 14).

Similarity transformations play an important role in PT and in CC
theories, as is seen, for example, in the derivation of quasidegenerate

292
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perturbation theory in Section 2.5. An important property of such transfor-
mations is that they do not change the eigenvalue spectrum of the operator.

For a more explicit form of H we use the Baker–Campbell–Hausdorff
expansion (Campbell 1897, Baker 1905, Hausdorff 1906),

e−B̂ÂeB̂ =
(
1 − B̂ + 1

2B̂2 − 1
3!B̂

3 + · · ·
)
Â

(
1 + B̂ + 1

2B̂2 + 1
3!B̂

3 + · · ·
)

= Â + (ÂB̂ − B̂Â) + 1
2(ÂB̂2 − 2B̂ÂB̂ + B̂2Â)

+ 1
3!(ÂB̂3 − 3B̂ÂB̂2 + 3B̂2ÂB̂ − B̂3Â) + · · ·

= Â + [Â, B̂] + 1
2

{
(ÂB̂ − B̂Â)B̂ − B̂(ÂB̂ − B̂Â)

}
+ 1

3!

{
[(ÂB̂ − B̂Â)B̂ − B̂(ÂB̂ − B̂Â)]B̂

− B̂[(ÂB̂ − B̂Â)B̂ − B̂(ÂB̂ − B̂Â)]
}

+ · · ·
= Â + [Â, B̂] + 1

2 [ [Â, B̂], B̂] + 1
3! [ [ [Â, B̂], B̂], B̂] + · · · . (10.4)

Applying this expansion to H, we obtain

H = ĤN + [ĤN, T̂ ] + 1
2 [[ĤN, T̂ ], T̂ ] + 1

3! [[[ĤN, T̂ ], T̂ ], T̂ ]

+ 1
4! [[[[ĤN, T̂ ], T̂ ], T̂ ], T̂ ] . (10.5)

For reasons that will become clear later (related to the fact that ĤN has
at most two-particle interactions), this series terminates with the four-fold
commutator.

The commutator expansion of H can be simplified, taking advantage of
the generalized Wick’s theorem and its diagrammatic representation. At
this point we shall consider only one aspect of the simplification. Let Â and
B̂ be two normal-product operators, each consisting of a product of an even
number of creation or annihilation operators (these conditions are satisfied
by the components of ĤN and T̂ ). Then the generalized Wick’s theorem,
applied to their commutator, gives

[Â, B̂] = ÂB̂ − B̂Â = {ÂB̂} + {ÂB̂} − {B̂Â} − {B̂Â} , (10.6)

where { } indicates a normal product and {ÂB̂} represents the sum of all
normal products in which there are one or more contractions between the
creation or annihilation operators in Â and those in B̂. Since Â and B̂ each
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contain an even number of creation or annihilation operators, we have

{ÂB̂} = {B̂Â} , (10.7)

so that all terms without contraction cancel and

[Â, B̂] = {ÂB̂} − {B̂Â} . (10.8)

The canceled uncontracted terms correspond to disconnected diagrams in
the diagrammatic representation of the CC equations, and their cancellation
simplifies the equations considerably.

The T̂m cluster operators contain only particle creation operators â†, b̂†, . . .
and hole annihilation operators î, ĵ, . . . Since the only nonzero contractions
are of the forms

âb̂† = δab and î†ĵ = δij ,

no nonzero contractions can be obtained between different T̂m operators (and
thus [T̂m, T̂n] = 0, i.e. the different T̂m operators commute, as might be ex-
pected). As a result, in the repeated commutators [. . . [[ĤN, T̂ ], T̂ ], . . . , T̂ ],
the only surviving terms involve contractions between ĤN and one or more
of the T̂m. Since each term in ĤN contains at most four creation or annihi-
lation operators it can be contracted with at most four T̂m operators, thus
accounting for the termination of the Baker–Campbell–Hausdorff expansion
with the four-fold commutator.

Furthermore, since a particle creation operator, such as â†, can only pro-
duce a nonzero contraction with a particle annihilation operator â to its left
and since a hole annihilation operator î can only produce a nonzero contrac-
tion with a hole creation operator î† to its left, the only surviving terms in
the expansion (10.5) are those in which ĤN is the first operator on the left,

H = e−T̂ ĤNeT̂

= ĤN + ĤNT̂ + 1
2ĤNT̂ T̂ + 1

3!ĤNT̂ T̂ T̂ + 1
4!ĤNT̂ T̂ T̂ T̂

=
(
ĤNeT̂

)
C

. (10.9)

The contraction symbols of the form etc. indicate a sum over all
terms in which ĤN is connected by at least one contraction with each of
the following T̂ operators; the subscript C also indicates this restriction
to connected terms. It is important to distinguish between disconnected
clusters such as T̂mT̂nΦ0, which are present in the CC wave function, and
disconnected terms (disconnected diagrams), which cancel in the expansion
of H =

(
ĤNeT̂ Φ0

)
C

and in the coupled-cluster equations.
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When the connected-terms expansion of H is substituted into the similarity-
transformed form of the Schrödinger equation (10.2) we obtain the connected
form of that equation, (

ĤNeT̂ |0〉
)
C

= ∆E|0〉 . (10.10)

This form of the Schrödinger equation will be used as the basis for the
derivation of the various sets of CC equations. When it is projected onto
the zero-order function we get the energy equation, which consists solely of
linked (or closed, connected) diagrams,

〈0|ĤNeT̂ |0〉C = ∆E , (10.11)

and when it is projected onto a set of excited functions we get the connected
amplitude equation,

〈Φab...
ij... |ĤNeT̂ |0〉C = 0 . (10.12)

With this derivation the energy has automatically disappeared from the
amplitude equations; we do not have to work out its cancellation explicitly
in each case.

It is sometimes convenient to write the CC equations (10.11), (10.12) in
the form

P̂HP̂ = ∆E P̂ ,

Q̂HP̂ = 0 , (10.13)

where P̂ and Q̂ are the familiar projection operators onto the reference
space and its complement, respectively (Section 2.3). The appropriate gen-
eral form (2.49) of the projection operators applies when nonorthonormal
functions Φi are employed.

10.2 The general form of CC diagrams

Each term in the perturbation theory equations may contain multiple V̂

factors, and the corresponding diagrams may contain multiple interaction
vertices × and . In contrast, the terms appearing in coupled-
cluster equations each contain only one operator derived from the normal-
product Hamiltonian ĤN, as can be seen from (10.11) and (10.12). All other
Hamiltonian-operator factors, as well as the associated denominators, have
been absorbed into the T̂m cluster operators, as can be seen in Fig. 9.3,
for example. Therefore the diagrams used to represent the various terms in
coupled-cluster equations never have more than one interaction vertex each.
Furthermore, that vertex is the top vertex in the diagram.
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Interpretation rules for coupled-cluster diagrams

1. Label external (open) lines with the hole (i, j, . . .) and particle (a, b, . . .)
target indices. (The target indices are those that occur in the bra part
of the amplitude equation.) Label internal lines with hole and particle
indices that are different from the target indices.

2. With any one-particle interaction vertex × associate a factor
fout,in.

3. With any two-particle interaction vertex associate an antisym-
metric two-electron integral 〈left–out right–out‖left–in right–in〉.

4. With every T̂m vertex i a j b· · ·
associate an amplitude tab...

ij... .
5. Sum over all internal line labels.
6. Associate a factor 1

2 with each pair of equivalent internal lines. (Two
internal lines are considered equivalent if they connect the same two
vertices, going in the same direction.)

7. Associate a factor 1
2 also with each pair of equivalent T̂m vertices. (Two

T̂ vertices are considered equivalent if they have the same number of
line pairs and are connected in equivalent ways to the interaction ver-

tex; examples are provided by the two T̂1 vertices in and in

, but not those in .)

8. Associate with each term a sign −1(h−l), where h is the number of
hole lines and l is the number of loops. For the purpose of counting
loops, paired external lines (lines with labels such as (i, a) or (j, b) that
are paired vertically in the bra part of the amplitude equation) are
considered connected externally through imaginary extensions, forming
quasiloops.

9. Sum over all distinct permutations P̂ of labels of inequivalent external
particle lines and of inequivalent external hole lines, including a par-
ity factor (−1)σ(P̂ ). Lines that are quasi-equivalent (i.e. that would be
equivalent if they became internal by the addition of an interaction ver-
tex) are not considered inequivalent for this purpose. These sums over
permutations are represented by operators of the form P̂ (ij · · · |ab · · · );
see (9.114), (9.119).

10. In open diagrams with equivalent vertices, cancel each factor 1
2 arising

from rule 7 above with a permutation of the labels of a pair of external
lines connected to the equivalent vertices (going in the same direction).

Fig. 10.1. Summary of the rules of interpretation for coupled-cluster diagrams.

Because all terms in these equations must be connected, and because an
interaction vertex has at most four lines and so can connect at most four
T̂m vertices, there can be no more than four T̂m vertices in any connected
diagram in the CC equations (demonstrating again the termination of the
commutator expansion of H, (10.5), with the four-fold commutator).
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The coupled-cluster diagrams, like MBPT diagrams, fall into two classes:
(a) closed diagrams, which occur in the energy equation (10.11); (b) open
diagrams, which appear in the amplitude equations (10.12). There are only
three distinct CC energy diagrams, shown here with their interpretations:

i a b j i a

×
i a b j

1
4

∑
ijab

〈ij‖ab〉tab
ij

∑
ia

fiat
a
i

1
2

∑
ijab

〈ij‖ab〉tai tbj

These diagrams provide the energy expression at all levels of the coupled-
cluster method. The differing energy results obtained at different CC levels
are due to the differing amplitudes obtained for the cluster operators at
those levels.

The rules of interpretation for CC diagrams are given in Fig. 10.1.

10.3 Systematic generation of CC diagrams

The process of constructing all the distinct diagrams that appear in the CC
equations requires careful consideration of all the distinct ways in which
Hamiltonian vertices can be added to cluster-operator diagrams. As we saw
in the construction of the diagrams for the quadratic contribution to the
CCD equations, (9.121), the use of Hugenholtz-like diagrams can be very
helpful in this process. We now describe another method, using simple com-
binatorial elements, for generating distinct antisymmetrized CC diagrams.

This method is based on the assignment of a set of plus and minus labels to
each Hamiltonian-operator (interaction) vertex and to each cluster-operator
diagram. These labels describe the type and number of lines below the
interaction vertex and above the cluster-operator vertex (or vertices) of the
CC diagrams. A plus sign is included for each open particle line and a minus
sign for each open hole line. A zero is used to indicate the absence of such
lines. The Hamiltonian-operator vertices are thus assigned labels as follows:

× × × ×

+ − 0 +− + + −− +−

+ + + − − + − − 0 + + −−
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The cluster-operator vertices are given the following labels:

+− + + −− + + + − −− + + + + − − −−

For repeated cluster operators the labels for the individual vertices are par-
titioned by vertical lines:

+ − | + + − − + + − − | + + − −

The key step in each stage of CC diagram construction is the addition
of an interaction vertex above a set of T̂m vertices in all possible ways that
generate distinct connected CC diagrams of the required excitation level.
The interaction vertices must be selected to have the appropriate excitation
level, see (9.105), (9.107), to produce final diagrams of the desired overall
excitation level. Then, for each selected interaction vertex, all the particle
or hole lines below it are contracted with (i.e. connected to) matching open
lines of the CC diagram, using the + and − labels for guidance, in all possible
non-redundant ways.

Note that neither the (+1) F̂N vertex (the third diagram in (9.105)) nor
the (+2) Ŵ vertex (the eighth diagram in (9.107)) can be used to generate
connected CC diagrams. Furthermore, there are obvious limitations on the
number of T̂m vertices that can be connected by each interaction vertex.
Thus, (0)-excitation F̂N vertices (the first two diagrams in (9.105)) or the
(+1) Ŵ vertices (the fourth and fifth diagrams in (9.107)) can connect to
only one T̂m vertex and thus cannot be used to generate connected CC
diagrams from disconnected clusters of T̂m operators.

We will illustrate this process by applying it to the generation of the
Q (T̂ 2

2 ) diagrams of (9.121) (also seen in the T̂
(3)
2 equation in Fig. 9.3).

Since we are beginning with a quadruple excitation in T̂ 2
2 and the tar-

get diagram is a contribution to T̂2, only double-de-excitation (−2) in-
teraction vertices can be used and there is only one of those. Thus the
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diagram parts that need to be connected, together with their + and −
labels, are

+ + −−

.

+ + −− | + + −−

Four lines in the bottom part, corresponding to two + and two − labels,
must be selected for contraction with the top part, giving rise to four dis-
tinct contraction patterns that connect both T̂2 vertices to the interaction
vertex:

+ + | − − + − | + − + + − | − + − − | + .

The order of the + and − labels in each partition is irrelevant. Further-
more, since the two T̂2 vertices are equivalent, the pattern − − | + + is
equivalent to ++ |−− and ++−|− is equivalent to −|++−. The four dis-
tinct contraction patterns generate the four connected quadratic diagrams
Qa–Qd of (9.121),

i
j a

b i
a b

j
i a

b j
a i

j b

.

This procedure is equivalent to the approach described in Section 9.5
based on Hugenholtz-like diagrams, but it provides the sign determination
directly. The use of antisymmetrized Goldstone diagrams together with
the normal-ordered ĤN and T̂ operators and the above simple combinato-
rial scheme generates all amplitude diagrams unambiguously and without
repetition.

10.4 The coupled-cluster singles and doubles (CCSD) equations

As can be seen from (9.78), the only first-order wave-function contribution
to T̂1 is due to the one-electron operator f̂o,

(1)
=

×
. (10.14)
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The second- and third-order contributions to the CC energy (see Fig. 9.3)
are

∆E(2) =
(1)

+
×

(1)
, (10.15)

∆E(3) =
(2)

+
×

(2)
+

(1) (1)
. (10.16)

When a Hartree–Fock reference function (canonical or otherwise) is used, f̂ is
block diagonal and any diagram containing a one-body particle–hole interac-
tion ( × or × ) vanishes. Thus there is no first-order wave function
contribution to T̂1, and the only nonzero contributions to the second- and
third-order energy come from T̂2. Thus we can say that in the HF case
CCD is correct through first order in the wave function and third order
in the energy, though it includes many higher-order contributions involving
disconnected clusters such as disconnected quadruple excitations. The same
conclusion can be reached by use of the Brillouin theorem, Section 1.5, which
is just a manifestation of the block-diagonal nature of f̂ . Therefore CCD
based on HF orbitals will frequently provide quite reasonable approxima-
tions. However, the addition of single-excitation contributions adds 35 dia-
grams but entails little computational effort and can be very useful in many
situations.

A primary reason for the inclusion of single excitations in many cases
is that it permits the use of non-HF reference functions, for which f̂ is
not block diagonal and the Brillouin theorem does not hold. In such cases
the matrix elements 〈Φa

i |Ĥ|Φ0〉 = fia can be quite large, and single excita-
tions can make substantial contributions to the first-order wave function and
second-order energy. The same is true for restricted open-shell HF (ROHF)
reference functions, which do not satisfy the usual Brillouin theorem either.
Furthermore, including T̂1 and its disconnected cluster products in the wave
function greatly reduces the sensitivity to orbital choice in CCSD and higher
approximations, because the effect of eT̂1 is to transform any single determi-
nant into another single determinant. This property of eT̂1 is known as the
Thouless theorem (Thouless, 1960). However, including single excitations in
truncated CI is not nearly as effective in reducing this sensitivity, because
it leaves out most of the disconnected clusters involving T̂1. Thus the in-
clusion of T̂1 introduces an important flexibility in CCSD and higher CC
applications.
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Another important reason for including single excitations, a reason that
holds even for unrestricted and closed-shell restricted HF reference functions,
has to do with the calculation of density matrices and associated proper-
ties. Such calculations involve matrix elements of various one-particle op-
erators 〈0|Û |ai 〉, which do not vanish in general even when HF orbitals are
used. Single- and double-excitation contributions to such properties enter
at the same order of perturbation theory, and should be treated on an equal
footing.

To derive the CCSD equations, we substitute T̂ = T̂1 + T̂2 into (10.11)
and (10.12). Arranging the resulting terms in approximate order of their
importance, the equations take the form

〈0|ĤN(T̂2 + T̂1 + 1
2 T̂ 2

1 )|0〉C = ∆E , (10.17)

〈 a
i |ĤN(1 + T̂2 + T̂1 + T̂1T̂2 + 1

2 T̂ 2
1 + 1

3! T̂
3
1 )|0〉C = 0 , (10.18)

〈ab
ij |ĤN(1 + T̂2 + 1

2 T̂ 2
2 + T̂1 + T̂1T̂2 + 1

2 T̂ 2
1 + 1

2 T̂ 2
1 T̂2 + 1

3! T̂
3
1 + 1

4! T̂
4
1 )|0〉C = 0 .

(10.19)

The energy equation (10.17) retains this form even in higher CC models,
since clusters of more than two particles cannot contribute to the expectation
value in this equation (because of the two-particle nature of ĤN). While the
energy depends directly on the T̂1 and T̂2 amplitudes only, it is affected by
the inclusion of connected triple, quadruple and higher excitations in higher
CC models because these amplitudes are affected by the higher excitations
through the coupled amplitude equations. The single-excitation equations
(10.18) can include up to triple-excitation terms; however, in the CCSD
model T̂3 = 0 so only disconnected triple-excitation clusters appear. Sim-
ilarly, the double-excitation equations (10.19) contain disconnected triple-
and quadruple-excitation terms but not T̂3 or T̂4.

The “quadratic CI” analog of CCSD, the QCISD model of Pople, Head-
Gordon and Raghavachari (1987), is an approximation to CCSD in which all
terms containing T̂1 in (10.17)–(10.19), except the T̂1T̂2 term in (10.18), are
left out (Paldus, Č́ıžek and Jeziorski 1989, 1990, Pople, Head-Gordon and
Raghavachari 1989, Raghavachari, Head-Gordon and Pople 1990). However,
the omission of these terms has negligible impact on the computational cost
of the model and may, in some cases, adversely affect the quality of the
results (Watts, Urban and Bartlett 1995).
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Diagrammatically, the CCSD energy equation can be written

∆E = +
×

+ . (10.20)

As noted in the previous section, these three diagrams are all the distinct
closed diagrams that can appear in any CC energy equation. The corre-
sponding algebraic energy expression is

∆E = 1
4

∑
ijab

〈ij‖ab〉tab
ij +

∑
ia

fiat
a
i + 1

2

∑
ijab

〈ij‖ab〉tai tbj . (10.21)

The last term can be combined with the first after splitting it into two
terms and interchanging a and b in one of them, giving the antisymmetric
form

∆E = 1
4

∑
ijab

〈ij‖ab〉(tab
ij + tai t

b
j − tbi t

a
j ) +

∑
ia

fiat
a
i . (10.22)

In the HF case fia = 0 and the last term in (10.22) vanishes.
The diagrams representing the single-excitation CCSD equations (10.18)

are collected in Fig. 10.2. The numbering of the diagrams corresponds to
the order of the terms in (10.18); the fixed labels i and a are understood for
all open lines. The generation and interpretation of these diagrams is shown
in Table 10.1, using the scheme introduced in Section 10.3 and the rules of
interpretation (Fig. 10.1). The summations are over all the common indices

×

S1

×

S2a S2b S2c

×

S3a

×

S3b S3c

S4a S4b S4c

×

S5a S5b S5c S6

Fig. 10.2. Antisymmetrized Goldstone diagrams representing the CCSD T̂1

equations.
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Table 10.1. Generation and interpretation of diagrams for CCSD T̂1

amplitude equations (see (10.18))

Interaction Contractions Diagram Interpretationa

1 (no T̂ vertex, requires +1 interaction vertex)

0 0 S1 fai

T̂2 (vertex + + −−, requires −1 interaction vertex):

+− +− S2a

∑
fkct

ac
ik

+ + − + + − S2b
1
2

∑
〈ak‖cd〉tcd

ik

+ −− + −− S2c − 1
2

∑
〈kl‖ic〉tac

kl

T̂1 (vertex +−, requires 0 interaction vertex):

+ + S3a

∑
fact

c
i

− − S3b −
∑

fkit
a
k

+− +− S3c

∑
〈ak‖ic〉tck

T̂1T̂2 (vertices + − | + + −−, requires −2 interaction vertex):

+ + −− + | + −− S4a − 1
2

∑
〈kl‖cd〉tci tad

kl

− | + +− S4b − 1
2

∑
〈kl‖cd〉taktcd

il

+ − | + − S4c

∑
〈kl‖cd〉tcktda

li

1
2 T̂ 2

1 (vertices + − | + −, requires −1 interaction vertex):

+− + | − S5a −
∑

fkct
c
i t

a
k

+ + − +| + − S5b

∑
〈ak‖cd〉tci tdk

+ −− −| + − S5c −
∑

〈kl‖ic〉taktcl

1
3! T̂

3
1 (vertices + − | + −| + −, requires −2 interaction vertex):

+ + −− +| + − |− S6 −
∑

〈kl‖cd〉tci taktdl

aIn this and all subsequent cases, the algebraic interpretation of the diagrams as-
sumes that labels are assigned in alphabetical order, from left to right, within each
class of lines (open particle lines, internal particle lines, open hole lines, internal
hole lines), subject to the condition that a and i are on the same continuous path,
so are b and j etc.
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k, l, c, d that occur in each term. The single-excitation CCSD equations are
then

fai +
∑
kc

fkct
ac
ik + 1

2

∑
kcd

〈ak‖cd〉tcdik − 1
2

∑
klc

〈kl‖ic〉tac
kl +

∑
c

fact
c
i

−
∑

k

fkit
a
k +

∑
kc

〈ak‖ic〉tck − 1
2

∑
klcd

〈kl‖cd〉tci tad
kl − 1

2

∑
klcd

〈kl‖cd〉taktcdil

+
∑
klcd

〈kl‖cd〉tcktda
li −

∑
kc

fkct
c
i t

a
k +

∑
kcd

〈ak‖cd〉tci tdk

−
∑
klc

〈kl‖ic〉taktcl −
∑
klcd

〈kl‖cd〉tci taktdl = 0 (for all i, a). (10.23)

As in the CCD case, we separate the diagonal elements from the fifth and
sixth terms in (10.23) (corresponding to diagrams S3a, S3b) and move them
to the opposite side of the equation as (fii − faa)tai = (εi − εa)tai , in order to
set up an iterative solution. It is then obvious that the first approximation
to tai is

t
a (1)
i =

fai

εi − εa
, (10.24)

and when this approximation is put into the energy expression it gives the
second-order MBPT energy contribution from the single excitations,

×

×
=

∑
ia

|fia|2
εi − εa

. (10.25)

In the Hartree–Fock case the first, second and eleventh terms of (10.23)
(diagrams S1, S2a, S5a) vanish, and so does the second-order energy contri-
bution from the single excitations, (10.25). In the canonical HF case the
off-diagonal parts of the fifth and sixth terms also vanish.

For the double-excitation part of the CCSD equations, we have already
derived the contributions from the first three terms of (10.19), since those
were present in CCD. The remaining terms are represented by the diagrams
in Fig. 10.3. Diagrams D4a, D4b represent the linear T̂1 contributions to
(10.19), while diagrams D5a–D5h represent the quadratic T̂1T̂2 term. An-
other quadratic term, 1

2 T̂ 2
1 , is represented by diagrams D6a–D6c. The two

cubic terms, 1
2 T̂ 2

1 T̂2 and 1
3! T̂

3
1 , are represented by diagrams D7a–D7e and

D8a, D8b, respectively, while diagram D9 represents the quartic term, 1
4! T̂

4
1 .
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D4a D4b

×

D5a

×

D5b D5c D5d

D5e D5f D5g D5h D6a D6b

D6c D7a D7b D7c

D7d D7e D8a D8b D9

Fig. 10.3. Antisymmetrized Goldstone diagrams representing T̂1 contributions to
the CCSD T̂2 equations.

Note that diagrams D5c, D5d and D7c could also have been drawn in the
equivalent forms

D′
5c D′

5d D′
7c

as can be verified by examining their + and − contraction patterns (or,
equivalently, from the corresponding Hugenholtz-like forms).

The generation and interpretation of these diagrams is given in Table 10.2.
As an illustration of the procedure we shall consider the T̂1T̂2 contribution.
The cluster operators in this term provide a +3 excitation, and since we
need a final +2 excitation for the T̂2 equations, we can only use the −1
components of the Hamiltonian. There are three such components,

×

+− + + − + − −

from which the eight diagrams D5a–D5h are generated.
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Table 10.2. Generation and interpretation of diagrams for T̂1 contributions
to CCSD T̂2 equations

Interaction Contractions Diagram Interpretation

T̂1 (vertex +−, requires +1 interaction vertex):

+ + D4a P̂ (ij)
∑

〈ab‖cj〉tc
i

− − D4b −P̂ (ab)
∑

〈kb‖ij〉ta
k

T̂1T̂2 (vertices + − | + + −−, requires −1 interaction vertex):

+− +|− D5a −P̂ (ij)
∑

fkct
c
i t

ab
kj

−|+ D5b −P̂ (ab)
∑

fkct
a
ktcb

ij

+ + − +| + − D5c P̂ (ij|ab)
∑

〈ak‖cd〉tc
i t

db
kj

−| + + D5e − 1
2
P̂ (ab)

∑
〈kb‖cd〉ta

ktcd
ij

+ − |+ D5g P̂ (ab)
∑

〈ka‖cd〉tc
ktdb

ij

+ −− −| + − D5d −P̂ (ij|ab)
∑

〈kl‖ic〉ta
ktcb

lj

+| − − D5f
1
2
P̂ (ij)

∑
〈kl‖cj〉tc

i t
ab
kl

+ − |− D5h −P̂ (ij)
∑

〈kl‖ci〉tc
ktab

lj

1
2
T̂ 2

1 (vertices + − | + −, requires 0 interaction vertex):

++ +|+ D6a
1
2
P̂ (ij)

∑
〈ab‖cd〉tc

i t
d
j =

∑
〈ab‖cd〉tc

i t
d
j

−− −|− D6b
1
2
P̂ (ab)

∑
〈kl‖ij〉ta

ktb
l =

∑
〈kl‖ij〉ta

ktb
l

+− +|− D6c −P̂ (ij|ab)
∑

〈kb‖cj〉tc
i t

a
k

1
2
T̂ 2

1 T̂2 (vertices + − | + −| + + −−, requires −2 interaction vertex):

+ + −− +| + | − − D7a
1
4
P̂ (ij)

∑
〈kl‖cd〉tc

i t
ab
kl t

d
j = 1

2

∑
〈kl‖cd〉tc

i t
ab
kl t

d
j

−| − | + + D7b
1
4
P̂ (ab)

∑
〈kl‖cd〉ta

ktcd
ij tb

l = 1
2

∑
〈kl‖cd〉ta

ktcd
ij tb

l

+| − | + − D7c −P̂ (ij|ab)
∑

〈kl‖cd〉tc
i t

a
ktdb

lj

+ − | + |− D7d −P̂ (ij)
∑

〈kl‖cd〉tc
ktd

i tab
lj

+ − | − |+ D7e −P̂ (ab)
∑

〈kl‖cd〉tc
kta

l tdb
ij

1
3!

T̂ 3
1 (vertices + − | + −| + −, requires −1 interaction vertex):

+ + − +| − |+ D8a
1
2
P̂ (ij|ab)

∑
〈kb‖cd〉tc

i t
a
ktd

j = P̂ (ab)
∑

〈kb‖cd〉tc
i t

a
ktd

j

+ −− +| − |− D8b
1
2
P̂ (ij|ab)

∑
〈kl‖cj〉tc

i t
a
ktb

l = P̂ (ij)
∑

〈kl‖cj〉tc
i t

a
ktb

l

1
4!

T̂ 4
1 (vertices + − | + −| + −| + −, requires −2 interaction vertex):

+ + − +| − |+ D9
1
4
P̂ (ij|ab)

∑
〈kl‖cd〉tc

i t
d
j ta

ktb
l =

∑
〈kl‖cd〉tc

i t
d
j ta

ktb
l
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The summations in the interpretation column of Table 10.2 are over the
internal labels k, l, c, d present in each term. To clarify the interpretation
rules further, it will be instructive to review some of the numerical coeffi-
cients and the permutation operators in the table in detail.

The factors 1
2 in diagrams D5e and D5f result from the presence of a pair

of equivalent internal lines. Diagrams D6a, D6b each have a pair of equiva-
lent vertices (as shown by the contraction patterns) and a pair of external
lines that are inequivalent (because they are connected to different vertices),
resulting in a factor 1

2 (rule 7, Fig. 10.1) and a permutation operator in each
case. These two factors cancel with each other (rule 10), as shown in the
table, since the permutation is equivalent to the relabeling of internal lines
corresponding to dummy summation indices.

The factors 1
4 in diagrams D7a, D7b arise because each diagram has one

pair of equivalent internal lines and one pair of equivalent vertices (in dia-
gram D7a we use + contractions for both T̂1 vertices while in D7b we use −
contractions for both). One factor 1

2 cancels with the permutation operator
in each of these diagrams, as shown. In diagrams D7c–D7e there are no
equivalent lines and no equivalent vertices.

Diagrams D8a, D8b each have a pair of equivalent vertices, as can be seen
from their contraction patterns, +| − |+ and +| − |−, respectively, and thus
they acquire factors of 1

2 . These factors cancel with part of the P̂ (ij|ab)
permutation operator that results from the two pairs of inequivalent external
lines. This cancellation is with the P̂ (ij) operator in D8a and with P̂ (ab) in
D8b, as shown.

Diagram D9 has two pairs of equivalent vertices (two vertices using a
+ contraction and two using a − contraction), resulting in a factor 1

4 and
two pairs of inequivalent external lines. Again, the P̂ (ij|ab) permutation
operator cancels with the factor 1

4 , since permuting a with b or i with j is
equivalent to relabeling the internal lines.

Combining all the results in Table 10.2 together with those previously
obtained for the CCD equations, the T̂2 amplitude equations for CCSD are
obtained as

DCCD + P̂ (ij)
∑

c

〈ab‖cj〉tci − P̂ (ab)
∑

k

〈kb‖ij〉tak − P̂ (ij)
∑
kc

fkct
c
i t

ab
kj

− P̂ (ab)
∑
kc

fkct
a
kt

cb
ij + P̂ (ij|ab)

∑
kcd

〈ak‖cd〉tci tdb
kj

− P̂ (ij|ab)
∑
klc

〈kl‖ic〉taktcblj − 1
2 P̂ (ab)

∑
kcd

〈kb‖cd〉taktcdij
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+ 1
2 P̂ (ij)

∑
klc

〈kl‖cj〉tci tab
kl + P̂ (ab)

∑
kcd

〈ka‖cd〉tcktdb
ij

− P̂ (ij)
∑
klc

〈kl‖ci〉tcktab
lj +

∑
cd

〈ab‖cd〉tci tdj +
∑
kl

〈kl‖ij〉taktbl

− P̂ (ij|ab)
∑
kc

〈kb‖cj〉tci tak + 1
2

∑
klcd

〈kl‖cd〉tci tdj tab
kl + 1

2

∑
klcd

〈kl‖cd〉taktbl tcdij

− P̂ (ij|ab)
∑
klcd

〈kl‖cd〉tci taktdb
lj − P̂ (ij)

∑
klcd

〈kl‖cd〉tcktdi tab
lj

− P̂ (ab)
∑
klcd

〈kl‖cd〉tcktal tdb
ij + P̂ (ab)

∑
kcd

〈kb‖cd〉tci taktdj

+ P̂ (ij)
∑
klc

〈kl‖cj〉tci taktbl +
∑
klcd

〈kl‖cd〉tci tdj taktbl

= 0 for all i > j, a > b, (10.26)

where DCCD stands for all the terms on the left-hand side of the CCD
amplitude equations (9.126).

None of the terms in the CCSD equations raises the dependence of the
computational cost on the number of spinorbitals over that of the CCD
model. Thus the cost remains proportional to n 2

hn 4
p per iteration, or roughly

an n6 process.

10.5 Coupled-cluster singles, doubles and triples (CCSDT)
equations

The importance of various cluster contributions to the wave function and
to the energy is best judged in terms of the order of perturbation theory in
which they first enter. As can be seen from Eqs. (9.78), (9.93), and (9.94),
the only first-order contributions to the wave function come from single-
and double-excitation configurations. Furthermore, the first-order single-
excitation contribution vanishes in the HF case, in which the one-electron
interaction operator f̂ is block diagonal. Therefore the lowest-order CC
model is CCD, followed (particularly in non-HF cases) by CCSD. As previ-
ously discussed (see e.g. Section 10.4), these models include all the second-
and third-order contributions to the energy.

The second-order wave function, (9.79), and the fourth-order energy add
contributions from triple and quadruple excitations. In a CI expansion the
most important second-order contribution to the wave function (at least in
the HF case) comes from quadruple excitations and consists entirely of the
disconnected-cluster 1

2 T̂ 2
2 term (diagram 8 in (9.79)), which is included in the
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CCD and CCSD models. (The connected quadruple-excitation term T̂4 first
enters in the third-order wave function and fifth-order energy.) However, the
disconnected triple-excitation contribution to the second-order wave func-
tion (diagrams 18 and 19 in (9.79)) contains a one-electron interaction and
vanishes in the HF case. Therefore the principal contribution to the CC wave
function beyond the CCSD model is due to the connected triple-excitation
cluster T̂3 (diagrams 6 and 7 in (9.79); see also (9.95)). This contribution
enters the energy in fourth order, i.e. the same order as 1

2 T̂ 2
2 . Thus the

CCSDT model, which adds the terms containing T̂3 to CCSD, is the next
level of improvement in CC methodology and is correct through the second-
order wave function and fourth-order energy. Note also that T̂1 contributions
that do not contain the one-electron interaction, and thus do not vanish even
in the HF case, also enter the second-order wave function (diagrams 4 and
5 in (9.79), see also (9.93)) and the fourth-order energy.

The CCSDT wave function is

|ΨCCSDT〉 = exp(T̂1 + T̂2 + T̂3)|0〉 . (10.27)

The energy equation is the same as in the CCSD model, (10.17), though
the T̂1 and T̂2 amplitudes that appear in the equation will be affected by
the presence of the T̂3 operator in the amplitude equations. The CCSDT
amplitude equations are

〈 a
i |ĤN(1 + T̂2 + T̂1 + T̂1T̂2 + 1

2 T̂ 2
1 + 1

3! T̂
3

1 + T̂3)|0〉C = 0 , (10.28)

〈ab
ij |ĤN(1 + T̂2 + 1

2 T̂ 2
2 + T̂1 + T̂1T̂2 + 1

2 T̂ 2
1

+ 1
2 T̂ 2

1 T̂2 + 1
3! T̂

3
1 + 1

4! T̂
4

1 + T̂3 + T̂1T̂3)|0〉C = 0 , (10.29)

〈abc
ijk|ĤN(T̂2 + T̂3 + 1

2 T̂ 2
2 + T̂1T̂2 + T̂2T̂3 + T̂1T̂3

+ 1
2 T̂ 2

1 T̂2 + 1
2 T̂1T̂

2
2 + 1

2 T̂ 2
1 T̂3 + 1

3! T̂
3

1 T̂2)|0〉C = 0 . (10.30)

Note that T̂1 and its powers have been left out of (10.30) because they
cannot produce connected triple-excitation diagrams with one interaction
vertex.
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The single-excitation equation has one new term added to the terms in
the corresponding CCSD equation (10.18). This new term is represented by
the diagram

S7

= 1
4

∑
mnef

〈mn‖ef〉taef
imn . (10.31)

The CCSDT singles equation can then be written as

SCCSD + 1
4

∑
mnef

〈mn‖ef〉taef
imn = 0 (for all i, a) , (10.32)

where SCCSD stands for the entire left-hand side of the CCSD singles equa-
tion (10.23).

The doubles equation has two new terms, represented by the six diagrams
in Fig. 10.4. The generation and interpretation of diagrams D10a–D10c, rep-
resenting the term ĤNT̂3, is straightforward, giving the algebraic expressions

∑
me

fmet
abe
ijm + 1

2 P̂ (ab)
∑
mef

〈bm‖ef〉taef
ijm − 1

2 P̂ (ij)
∑
mne

〈mn‖je〉tabe
imn .

×

D10a D10b D10c

D11a D11b D11c

Fig. 10.4. Antisymmetrized Goldstone diagrams representing the T̂3 contributions
to the CCSDT T̂2 equations.
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For the diagrams representing ĤNT̂1T̂3 we have

Vertices Interaction Contraction Diagram

+ − | + + + −−− + + −− + − | + − D11a =∑
〈mn‖ef〉temtfab

ni

−| + +− D11b =
−P̂ (ab)

∑
〈mn‖ef〉tamtefb

inj

+| − −+ D11c =
−P̂ (ij)

∑
〈mn‖ef〉tei t

afb
mnj

The CCSDT doubles equation then takes the form

DCCSD +
∑
m,e

fmet
abe
ijm + 1

2 P̂ (ab)
∑
mef

〈bm‖ef〉taef
ijm

− 1
2 P̂ (ij)

∑
mne

〈mn‖je〉tabe
imn +

∑
mnef

〈mn‖ef〉temtfab
nij

− P̂ (ab)
∑

mnef

〈mn‖ef〉tamtefb
inj − P̂ (ij)

∑
mnef

〈mn‖ef〉tei t
afb
mnj

= 0 for all i > j, a > b, (10.33)

where DCCSD stands for all the terms on the left-hand side of the CCSD
doubles equation (10.26).

The triple-excitation CCSDT equation (10.30) has two linear, four quad-
ratic and three cubic terms and one quartic term, which generate the 47 dia-
grams shown in Fig. 10.5. For the algebraic interpretation of these diagrams
we introduce an extension of the notation for the permutation operators.
Taking diagram T1a as an example, and putting labels on the external lines,

a i j
b k c

,

we see that lines a and b are inequivalent, and so are a and c, but that b

and c are quasi-equivalent. Thus we need to include the permutations P̂ab

and P̂ac, but not P̂bc. We therefore define the permutation operator

P̂ (a/bc) = 1 − P̂ab − P̂ac . (10.34)

Similarly, we need the operator P̂ (k/ij) = 1 − P̂ik − P̂jk; the total permu-
tation operator for the diagram T1a is P̂ (a/bc|k/ij) = P̂ (a/bc)P̂ (k/ij). In
contrast, in diagram T4c all three open hole lines are inequivalent, requiring
the permutation operator P̂ (ijk|a/bc), in which all six permutations of i, j, k

are included.
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T1a T1b

×

T2a

×

T2b T2c T2d T2e

×

T3a T3b T3c T3d T3e

T4a T4b T4c T4d T5a T5b

T5c T5d T5e T5f T5g

×

T6a

×

T6b T6c T6d T6e T6f

T6g T6h T7a T7b T7c T7d

T8a T8b T8c T8d T8e

T9a T9b T9c T9d

T9e T10a T10b

Fig. 10.5. Antisymmetrized Goldstone diagrams representing the CCSDT T̂3

equations.

The algebraic interpretation of the diagrams in Fig. 10.5, in correspond-
ing order, is shown in Fig. 10.6, which gives the complete CCSDT triples
equation. The summations are over those of the internal indices l, m, d, e

that are present in each term. Note that diagrams T7c, T7d, T9c, T9d, T10a
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P̂ (k/ij|a/bc)
∑

〈bc‖dk〉tad
ij − P̂ (i/jk|c/ab)

∑
〈lc‖jk〉tab

il + P̂ (c/ab)
∑

fcdt
abd
ijk

− P̂ (k/ij)
∑

flktabc
ijl + 1

2 P̂ (c/ab)
∑

〈ab‖de〉tdec
ijk + 1

2 P̂ (k/ij)
∑

〈lm‖ij〉tabc
lmk

+ P̂ (i/jk|a/bc)
∑

〈al‖id〉tdbc
ljk − P̂ (k/ij|a/bc)

∑
fldt

ad
ij tbc

lk

+ P̂ (i/jk|abc)
∑

〈lb‖de〉tad
il tec

jk − P̂ (ijk|a/bc)
∑

〈lm‖dj〉tad
il tbc

mk

− 1
2 P̂ (i/jk|c/ab)

∑
〈lc‖de〉tab

il tde
jk + 1

2 P̂ (k/ij|a/bc)
∑

〈lm‖dk〉tad
ij tbc

lm

+ P̂ (i/jk|c/ab)
∑

〈ab‖de〉tdi tec
jk + P̂ (k/ij|a/bc)

∑
〈lm‖ij〉tal tbc

mk

− P̂ (ijk|a/bc)
∑

〈al‖id〉tdj tbc
lk − P̂ (i/jk|abc)

∑
〈al‖id〉tbl tdc

jk

+ P̂ (i/jk|a/bc)
∑

〈lm‖de〉tad
il tebc

mjk − 1
2 P̂ (i/jk)

∑
〈lm‖de〉tde

li tabc
mjk

− 1
2 P̂ (a/bc)

∑
〈lm‖de〉tda

lmtebc
ijk − 1

2 P̂ (k/ij|a/bc)
∑

〈lm‖de〉tad
ij tbec

lmk

− 1
2 P̂ (i/jk|c/ab)

∑
〈lm‖de〉tab

il tdec
jmk + 1

4 P̂ (k/ij)
∑

〈lm‖de〉tde
ij tabc

lmk

+ 1
4 P̂ (c/ab)

∑
〈lm‖de〉tab

lmtdec
ijk − P̂ (i/jk)

∑
fldt

d
i t

abc
ljk − P̂ (a/bc)

∑
fldt

a
l tdbc

ijk

+ P̂ (i/jk|a/bc)
∑

〈al‖de〉tdi tebc
ljk − P̂ (i/jk|a/bc)

∑
〈lm‖id〉tal tdbc

mjk

+ P̂ (a/bc)
∑

〈la‖de〉tdl tebc
ijk − P̂ (i/jk)

∑
〈lm‖di〉tdl tabc

mjk

− 1
2 P̂ (abc)

∑
〈lb‖de〉tal tdec

ijk + 1
2 P̂ (ijk)

∑
〈lm‖dj〉tdi tabc

lmk

− P̂ (i/jk|abc)
∑

〈lb‖de〉tdi tal tec
jk + P̂ (ijk|a/bc)

∑
〈lm‖dj〉tdi tal tbc

mk

− P̂ (k/ij|a/bc)
∑

〈al‖de〉tdi tejtbc
lk + P̂ (i/jk|c/ab)

∑
〈lm‖id〉tal tbmtdc

jk

− P̂ (i/jk|c/ab)
∑

〈lm‖de〉tdl tab
imtec

jk − P̂ (ijk|a/bc)
∑

〈lm‖de〉tad
il tejt

bc
mk

− P̂ (i/jk|abc)
∑

〈lm‖de〉tad
il tbmtec

jk + 1
2 P̂ (i/jk|c/ab)

∑
〈lm‖de〉tal tdb

imtec
jk

+ 1
2 P̂ (k/ij|a/bc)

∑
〈lm‖de〉tal tde

ij tbc
mk − P̂ (i/jk)

∑
〈lm‖de〉tdl tei tabc

mjk

− P̂ (a/bc)
∑

〈lm‖de〉tdl tamtebc
ijk + 1

2 P̂ (j/ik)
∑

〈lm‖de〉tdi tabc
ljmtek

+ 1
2 P̂ (b/ac)

∑
〈lm‖de〉tal tdbe

ijk tcm − P̂ (i/jk|a/bc)
∑

〈lm‖de〉tdi tal tebc
mjk

+ P̂ (k/ij|a/bc)
∑

〈lm‖de〉tdi tal tejt
bc
mk + P̂ (i/jk|c/ab)

∑
〈lm‖de〉tdi tal tbmtec

jk

= 0 (for all i > j > k, a > b > c)

Fig. 10.6. The CCSDT T̂3 equations.



314 Systematic derivation of the coupled-cluster equations

Table 10.3. Lowest wave-function orders at which triple-excitation CCSDT
diagrams (Fig. 10.5) contribute

Diagrams Non-HF Noncanonical HF Canonical HF

T1a, T1b 2 2 2

T2a, T2b, diagonal 2 2 2

T2a, T2b, off-diag. 3 3 —

T2c–T2e 3 3 3

T3a 3 — —

T3b–T3e 3 3 3

T4a–T4d 3 4 4

T5a–T5g 4 4 4

T6a, T6b 4 — —

T6c–T6h 4 5 5

T7a–T7d 4 6 6

T8a–T8e 4 5 5

T9a–T9e 5 7 7

T10a, T10b 5 8 8

and T10b each have a pair of equivalent T̂1 vertices, and so the result-
ing factors 1

2 cancel against part of the corresponding permutation oper-
ator. Specifically, the original factors for these diagrams, −1

2 P̂ (ijk|a/bc),
1
2 P̂ (i/jk|abc), 1

4 P̂ (ijk), 1
4 P̂ (abc), 1

2 P̂ (ijk|a/bc) and 1
2 P̂ (i/jk|abc) (in order)

become −P̂ (k/ij|a/bc), P̂ (i/jk|c/ab), 1
2 P̂ (j/ik), 1

2 P̂ (b/ac), P̂ (k/ij|a/bc)
and P̂ (i/jk|c/ab), respectively.

The respective lowest wave-function orders at which the triple-excitation
CCSDT diagrams contribute are listed in Table 10.3. Note that each T̂1

vertex is first order in the non-HF case but second order in the HF case
(canonical or noncanonical), while the T̂2 and T̂3 vertices are first and
second order, respectively. The diagonal part of the one-electron interac-
tion vertex is zero order while the off-diagonal part is first order in general
but does not contribute in the canonical HF case and contributes only for
particle–particle and hole–hole vertices in the noncanonical HF case. The
lowest energy order to which these diagrams contribute is two higher than
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the wave-function order, since at least two interaction vertices are needed
to close any of the triple-excitation diagrams.

The leading terms in the triple-excitation CCSDT equations (Fig. 10.5)
are diagrams T1a, T1b and the diagonal parts of T2a, T2b, all of which are of
second order. To set up an iterative sequence, following a similar procedure
to that of previous cases we separate the diagonal part of each of diagrams
T2a, T2b (the only nonzero part of these diagrams in the canonical HF case)
and move it to the other side of the equation. Applying the permutation
operators (see the third and fourth terms in Fig. 10.6), we get a total of six
terms:

(εi + εj + εk − εa − εb − εc)tabc
ijk = εabc

ijktabc
ijk .

The first attempt at including triple-excitation effects in the CC method
used just the leading (second-order) terms in the CCSDT triples
equations:

εabc
ijktabc

ijk = P̂ (a/bc|k/ij)
∑

d

〈bc‖dk〉tad
ij − P̂ (c/ab|i/jk)

∑
l

〈lc‖jk〉tab
il .

(10.35)

The tabc
ijk amplitudes obtained from these equations were then substituted

in the CCSDT singles and doubles equations (10.32), (10.33) but, because
the T̂2 amplitudes enter in the right-hand side of (10.35), the solution re-
quired iteration of all three sets of equations. This model has been called
CCSDT-1 (Lee and Bartlett 1984, Lee, Kucharski and Bartlett 1984) and
has two variants, depending upon which diagrams involving a T̂3 vertex
are included in the CCSDT doubles equations (Urban, Noga, Cole et al.
1985). The CCSDT-1a model includes the T̂3 contribution S7, (10.31), to
the CCSDT singles equations, diagrams D10a–D10c (Fig. 10.4) in the CCSDT
doubles equations, and diagrams T1a, T1b and T2a, T2b of the CCSDT triples
equations. The CCSDT-1b model adds the remaining terms of the CCSDT
doubles equations, diagrams D11a–D11c (Fig. 10.4). Diagram D10a of the
doubles equation vanishes in the HF case. The off-diagonal parts of dia-
grams T2a, T2b, which vanish in the canonical HF case, are included in other
cases in order to maintain the invariance of the model to separate unitary
transformations of the occupied and virtual orbitals. This invariance per-
mits the removal of these off-diagonal parts by an orbital transformation
to semicanonical orbitals, which diagonalizes the hole–hole and particle–
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particle blocks of f̂ (without eliminating the off-diagonal blocks) (Handy,
Pople, Head-Gordon et al. 1989, Watts, Gauss and Bartlett 1993).

The iterative process for the solution of the CCSDT-1 equations in the
canonical HF case is shown diagrammatically in Fig. 10.7. Initially, the
second-order approximation t

abc (2)
ijk is obtained from the first-order approx-

imations t
ad (1)
ij and t

ab (1)
il , which, in turn, are just two-electron integrals

divided by denominators, 〈ad‖ij〉/εad
ij and 〈ab‖il〉/εab

il .

The evaluation of the T̂3 amplitudes from (10.35) in CCSDT-1 includes an
n 3

hn 4
p step per iteration (diagram T1a, the first term in Fig. 10.6), which may

be compared with the n 2
hn 4

p process per iteration in CCD or CCSD. Except
for the canonical HF case, there is another n 3

hn 4
p step per iteration for the off-

diagonal part of T2a. The insertion of the T̂3 amplitudes into diagrams D10b

and D10c of the CCSDT doubles equations (10.33) includes yet another n 3
hn 4

p

step per iteration. Besides the extra power of nh, there also is the potential
difficulty of having to store the ∼n 3

hn 3
p tabc

ijk amplitudes. Fortunately, it is
possible to avoid this latter difficulty in the CCSDT-1 model (and also in
the higher-order CCSDT-2 and CCSDT-3 models to be described later) by
evaluating the contribution of each tabc

ijk amplitude as soon as it is calculated
from (10.35) to diagrams S7 of the CCSDT singles equations and D10a–
D10c (and, for CCSDT-1b, to D11a–D11c) of the CCSDT doubles equations
(see Fig. 10.7).

In cases other than canonical HF (in this context these cases include re-
stricted open-shell HF), the inclusion of the off-diagonal parts of diagrams
T2a, T2b, besides adding another n 3

hn 4
p step, makes the triples amplitudes of

each iteration dependent on the triples amplitudes of the previous iteration
and thus requires the amplitudes to be stored. This difficulty can be elimi-
nated by performing a semicanonical transformation, as already noted. The
CCSDT-1 model is invariant under such a transformation provided that the
full diagrams T2a, T2b are included. However, in the ROHF case this trans-
formation destroys the equivalence of the spatial parts of the α-spin and
β-spin orbitals, making the computational effort similar to that of a UHF-
based calculation by precluding spin summations and essentially doubling
the ranges of the various indices.

In all cases the full CCSDT method requires storage of the tabc
ijk amplitudes.

Moreover, the full CCSDT involves an n 3
hn 5

p step per iteration (diagram T2c,
the fifth term in Fig. 10.6). While the full CCSDT model has been imple-
mented (Noga and Bartlett 1987, Trucks, Noga and Bartlett 1988), with
inclusion of open-shell systems (Watts and Bartlett 1990), the CCSDT-1
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= +

← + + +

+ + +

+ +

← + + +

Fig. 10.7. One cycle in the CCSDT-1 iteration scheme (for the canonical Hartree–
Fock case). The horizontal arrows indicate that the value of the expression on the
r.h.s. is used as the next approximation for the l.h.s. in the iteration. As noted in
the discussion following (9.126), a denominator corresponding to a resolvent line
above each interaction vertex is to be understood for each diagram on the r.h.s.
of the equations.

model and other CCSDT models have been developed in order to avoid the
very high computational cost of the full CCSDT equations.

Typically, the number of iterations required to solve the CCSDT-1 equa-
tions is between 10 and 20, so a further approximation that eliminates the
iterations in the evaluation and substitution of the tabc

ijk amplitudes would re-
sult in a significant reduction in the computational cost. The simplest way
to achieve this reduction would be to use the second-order t

abc (2)
ijk amplitudes

computed from the initial (first-order) t
ad (1)
ij and t

ab (1)
il amplitudes in all sub-

sequent iterations of the CCSDT singles and doubles equations. As can be
seen from the description of the iterative solution of the CCSDT-1 equations
in Fig. 10.7, this procedure provides just the fourth-order triple-excitation
contributions to the energy yet it requires two n 3

hn 4
p steps. However, the

evaluation of triple-excitation contributions to the MBPT(4) energy requires
only one n 3

hn 4
p step. This more economical MBPT evaluation is achieved,

in effect, by “squaring” the t
abc (2)
ijk quantity in the MBPT(4) procedure (see
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Section 7.1); this is illustrated diagrammatically and algebraically by

E
(4)
T =

(2)

(2)
=

∑
i>j>k
a>b>c

t
abc (2)∗
ijk t

abc (2)
ijk εabc

ijk . (10.36)

This formula can be understood by writing the second-order T̂3 vertex as

(2)
= + (10.37)

and contracting it with its adjoint in all allowed ways, giving rise to the
16 MBPT triple-excitation antisymmetrized fourth-order energy diagrams
(Fig. 5.9). The factor εabc

ijk is required to compensate for the fact that each

t
abc(2)
ijk carries one triple-excitation denominator.
Instead of using second-order T̂3 amplitudes in (10.36), we can employ

T̂3 amplitudes obtained from (10.35) using converged CCSD T̂2 amplitudes.
We designate these improved T̂3 amplitudes t

abc [2]
ijk , where the superscript [2]

indicates a generalized order,

[2]
= + ,

counting converged T̂2 amplitudes as first order since their initial appearance
is in the first-order wave function. In the same sense we consider converged
T̂1 amplitudes as second order in the HF case but first order otherwise, while
T̂3 and T̂4 amplitudes are second and third order, respectively. Replacing
just the bottom vertex in (10.36) by the improved T̂

[2]
3 vertex provides the

energy contributions of diagrams D10b, D10c subject to the use of (10.35)
to define T̂

[2]
3 . This is exactly the contribution that would be obtained by

adding these diagrams to the CCSD T̂2 amplitudes and including the added
terms in the energy formula (10.21), as can be seen by using the adjoint of
(10.37) for the top vertex. Also replacing the top vertex in (10.36) by the
adjoint of the T̂

[2]
3 vertex can be expected to provide additional higher-order

corrections and may be justified in terms of an expectation-value form of the
energy formula (Urban, Noga, Cole et al. 1985). The resulting expression can
simply be added to the CCSD energy to provide an estimate of the CCSDT
(or CCSDT-1) energy. This approximation leaves out energy contributions
from diagrams S7 and D10a, and the effect of diagrams T2a, T2b on the T̂3

amplitudes, and is thus only suitable for the canonical HF case. It was
first termed CCSD+T(CCSD), but is now known frequently as CCSD[T]
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or, using a more complete terminology, CC4SD[T]. This notation implies
infinite order in S and D and fourth order in T, the brackets in [T] being
used to indicate the limitation to the HF case.

An extension of CC4SD[T] incorporating the energy contributions from di-
agram S7 is known as CCSD(T) or CC4SD(T) (Raghavachari, Trucks, Pople
et al. 1989) and can be generalized for non-HF cases by adding diagram D10a

(Watts, Gauss and Bartlett 1993), provided that a semicanonical transfor-
mation is first carried out to eliminate the off-diagonal parts of diagrams
T2a and T2b (otherwise it would be necessary to iterate the evaluation of the
triple-excitation amplitudes). This procedure includes all possible fourth-
order contributions of single and double excitations subject to the simplified
triples expression obtained from (10.35). Employing an approach similar to
that used for the principal triples fourth-order energy contribution above
in which lower-order singles and doubles amplitudes are replaced by their
converged CCSD values, the resulting energy can be written as

ECC4SD(T) = ECCSD + E
[4]
T = ECCSD + E

[4]
t + E

[4]
st + E

[4]
dt , (10.38)

where

E
[4]
t =

=
1
36

∑
ijkabc

t
abc [2]∗
ijk t

abc [2]
ijk εabc

ijk =
∑

i>j>k
a>b>c

t
abc [2]∗
ijk t

abc [2]
ijk εabc

ijk , (10.39)

E
[4]
st =

=
1
4

∑
ia

t
a [1]∗
i

{∑
jkbc

〈bc‖jk〉tabc [2]
ijk

}
=

∑
ia

t
a [1]∗
i

{∑
j>k
b>c

〈bc‖jk〉tabc [2]
ijk

}
,

(10.40)

E
[4]
dt = ×

=
1
4

∑
ijab

t
ab [1]∗
ij

{∑
kc

fkct
abc [2]
ijk

}
=

∑
i>j
a>b

t
ab [1]∗
ij

{∑
kc

fkct
abc [2]
ijk

}
. (10.41)

The generalized orders (in superscript brackets) are for the non-HF case. In
the HF case the order of the singles amplitudes becomes [2] instead of [1],
and the Est term is of order (5) while the Edt term vanishes. In this case the
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Est term is small, and is the only difference between CCSD[T] and CCSD(T).
While it is just one of many fifth-order terms that could contribute to the
CCSDT energy, it is typically positive and serves to damp the sometimes
excessive negative contribution of ET in difficult cases. In our notation
the (T) designation implies suitability to any type of reference function, in
contrast with [T], which implies a restriction to the HF case. The CC4SD(T)
model is common in quantum chemistry applications, since it is inexpensive
enough to be usable for a large number of problems while providing results
that are usually as accurate as can be obtained by any modern quantum
chemistry method. All the approximations considered here for CCSDT are
correct through fourth order in MBPT for both HF and non-HF cases, while
containing many higher-order terms. Comparisons of numerical results for
the different models will be presented later in Section 10.8.

The CCSDT-1 model, which led to the above noniterative approxima-
tions, includes all second-order terms in the triples equations. For higher
accuracy we can consider the successive addition of further terms in these
equations, see Figs. 10.5 and 10.6, culminating in the full CCSDT treatment.
A systematic way to proceed would be to include all third-order terms in
the triples equations (see Table 10.3). However, doing so requires the eval-
uation of diagrams T2a–T2e (Fig. 10.5). Diagram T2a introduces an n 3

hn 5
p

step, which is one power of np higher than the costliest terms in CCSDT-1.
The computational cost of this approach is, in fact, almost as high as that
of full CCSDT, since it requires storage of the triple-excitation amplitudes
and since the remaining terms in CCSDT are nonlinear and can be factored.
Consequently, other strategies are recommended.

A characteristic of CC theory is that most linear terms, like diagrams T1a,
T1b and T2a–T2e, tend to produce negative-energy contributions, while the
contributions of the nonlinear terms tend to be positive. That is why LCCD,
the linearized version of CCD, is usually lower in energy than CCD. Thus
a sequence of linear approximations can often overestimate the correlation
energy, as can happen for CCSDT-1. The CCSDT-2 model (Urban, Noga,
Cole et al. 1985, Noga, Bartlett and Urban 1987) is an attempt to rectify
this problem by adding the quadratic terms T3a–T3e to the triples equations
of CCSDT-1. Since these diagrams represent the 1

2 T̂ 2
2 term in (10.30), they

should be the most important nonlinear terms. Furthermore, this model
includes all purely T̂2 contributions to the T̂3 equations. The triples con-
tributions to the T̂1 and T̂2 equation do not change, of course, as all such
terms are already included in CCSDT-1b.

We can take this approach a step further by including all possible T̂1

and T̂2 contributions to the triples equation, adding diagrams T4a–T4d,
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Table 10.4. Approximations for eT̂ used in the equations in the CCSDT-n
models (Urban, Noga, Cole et al. 1985).

Equations CCSDT-1a CCSDT-1b CCSDT-2 CCSDT-3

T̂1, (10.28) eT̂1+T̂2+T̂3 eT̂1+T̂2+T̂3 eT̂1+T̂2+T̂3 eT̂1+T̂2+T̂3

T̂2, (10.29) eT̂1+T̂2 + T̂3 eT̂1+T̂2+T̂3 eT̂1+T̂2+T̂3 eT̂1+T̂2+T̂3

T̂3, (10.30) T̂2 T̂2 eT̂2 eT̂1+T̂2

T7a–T7d and T8a–T8e to those included in CCSDT-2. This choice defines
the CCSDT-3 model (Urban, Noga, Cole et al. 1985, Noga, Bartlett and
Urban 1987). Since the single excitations are instrumental in ensuring the
insensitivity of CC theory to the choice of orbitals, the CCSDT-3 model
benefits from the complete inclusion of their contributions by providing ad-
ditional flexibility.

Because of the factorization of the nonlinear terms, the computational
cost of both the CCSDT-2 and CCSDT-3 approximations is no worse than
order n 3

hn 4
p , and neither model requires the storage of the T̂3 amplitudes.

All the iterative approximations to CCSDT can be characterized by the
approximation to eT̂ implied by each model in each of the singles, doubles
and triples equations, as shown in Table 10.4.

10.6 Coupled-cluster singles, doubles, triples and quadruples
(CCSDTQ) equations

The state-of-the art in CC theory currently includes the CCSDTQ model
(Kucharski and Bartlett 1992). Whereas CCSDT is correct through fourth
order in the energy and second order in the wave function, CCSDTQ is cor-
rect through sixth order in the energy and third order in the wave function.
This model introduces the connected T̂4 cluster, a third-order term con-
tributing to the fifth-order energy. Compared with the CCSDT equations,
new terms involving T̂4 appear in the doubles and triples CC amplitude
equations, and a quadruples amplitude equation is added:

DCCSDT + 〈ab
ij |(ĤNT̂4)C|0〉 = 0, (10.42)

TCCSDT + 〈abc
ijk |[ĤN(T̂4 + T̂1T̂4)]C|0〉 = 0, (10.43)
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〈abcd
ijkl |[ĤN(T̂3 + T̂4 + T̂1T̂3 + T̂1T̂4 + 1

2 T̂ 2
2 + T̂2T̂3 + T̂2T̂4 + 1

2 T̂ 2
3 ) + 1

3! T̂
3

2

+ 1
2 T̂ 2

1 T̂3 + 1
2 T̂ 2

1 T̂4 + 1
2 T̂1T̂

2
2 + T̂1T̂2T̂3 + 1

3! T̂
3

1 T̂3 + 1
4 T̂ 2

1 T̂ 2
2 ]|0〉C = 0.

(10.44)

The new term in the doubles equation (10.42) is represented by

D12

= 1
4

∑
mnef

〈mn‖ef〉tabef
ijmn . (10.45)

The new terms in the triples equation (10.43) are represented by the dia-
grams in Fig. 10.8. Assigning labels in the diagrams from left to right in the
order a, b, c and i, j, k to the open particle and hole lines, respectively, and
e, f and m, n to internal particle and hole lines, respectively, the resulting
triples equation takes the form

TCCSDT +
∑
me

fmet
abce
ijkm + 1

2P (c/ab)
∑
mef

〈cm‖ef〉tabef
ijkm

− 1
2P (k/ij)

∑
mnf

〈mn‖kf〉tabcf
ijmn +

∑
mnef

〈mn‖ef〉temtfabc
nijk

− 1
2P (i/jk)

∑
mnef

〈mn‖ef〉tei t
afbc
mnjk

− 1
2P (a/bc)

∑
mnef

〈mn‖ef〉tamtefbc
injk

= 0 for all i > j > k, a > b > c. (10.46)

The diagrams representing the T̂4 equation are shown in Fig. 10.9.
Analogously to the derivation of the CCSDT-1 model, we obtain the

quadruples equation for the CCSDTQ-1 model (Kucharski and Bartlett
1989, 1998c) by taking the diagonal parts of diagrams Q2a and Q2b (Fig. 10.9)

×

T11a T11b T11c

T12a T12b T12c

Fig. 10.8. Antisymmetrized Goldstone diagrams representing the T̂4 contributions
to the CCSDTQ T̂3 equation
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Q1a Q1b

×
Q2a

×
Q2b Q2c Q2d Q2e

Q3a Q3b Q3c Q3d

×
Q4a

×
Q4b

Q4c Q4d Q4e Q4f Q4g Q4h

Q5a Q5b Q5c

×
Q6a

×
Q6b Q6c

Q6d Q6e Q6f Q6g Q6h Q6i

Q6j Q7a Q7b Q7c Q7d

Q7e Q7f Q7g Q8a Q8b

Q8c Q8d Q9a Q9b Q9c

Q10a Q10b Q10c Q10d Q11a

Q11b Q11c Q11d Q11e Q12a

Q12b Q12c Q12d Q13a Q13b

Q13c Q13d Q13e Q13f Q13g

Q13h Q13i Q13j Q14a Q14b

Q15a Q15b Q15c

Fig. 10.9. Antisymmetrized Goldstone diagrams representing the CCSDTQ T̂4

equation.
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to one side of the equation and retaining only the dominant terms, diagrams
Q1a, Q1b and Q5a–Q5c, which are of third order, on the other side. The re-
sulting equation is

εabcd
ijkl tabcd

ijkl = P̂ (ab/cd|ijk/l)
∑

e

〈cd‖el〉tabe
ijk

− P̂ (abc/d|ij/kl)
∑
m

〈md‖kl〉tabc
ijm

+ 1
2 P̂ (a/bc/d|ij/kl)

∑
ef

〈bc‖ef〉tae
ij tfd

kl

+ 1
2 P̂ (i/jk/l|ab/cd)

∑
mn

〈mn‖jk〉tab
imtcdnl

− P̂ (ij/k/l|a/bc/d)
∑
me

〈md‖el〉tae
ij tbcmk . (10.47)

In the permutation factors, the “/” notation separates groups of equivalent
lines, so that permutations between the labels of these lines should be omit-
ted. Thus, a permutation factor such as P̂ (ab/cd|ijk/l) should be read as
follows:

P̂ (ab/cd|ijk/l) = P̂ (ab/cd)P̂ (ijk/l)

= (1 − P̂ac − P̂ad − P̂bc − P̂bd + P̂acP̂bd)(1 − P̂il − P̂jl − P̂kl) .

Similarly, the factor P (a/bc/d) implies all permutations of a, b, c, d except
for any permutations that exchange the labels of equivalent lines (initially b

and c),

P̂ (a/bc/d) = 1 − P̂ab − P̂ac − P̂ad − P̂bd − P̂cd

+ P̂abP̂cd + P̂acP̂bd + P̂bdP̂ad + P̂cdP̂ad + P̂abP̂ad + P̂acP̂ad .

In other words, we need to include all distinct assignments of target labels
to the lines originally labeled a and d.

The factors 1
2 in the third and fourth terms on the right-hand side of

(10.47) (diagrams Q5a and Q5b) result from the fact that the two T̂2 vertices
in each of these diagrams are equivalent (interpretation rule 7, Fig. 10.1).
Using rule 10, these factors can be canceled with that arising from the
permutation of labels a and d, resulting in the simplified form

P̂ (ad/bc|ij/kl)
∑
ef

〈bc‖ef〉tae
ij tfd

kl + P̂ (il/jk|ab/cd)
∑
mn

〈mn‖jk〉tab
imtcdnl
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for these terms. However, to facilitate factorization of the sums, as discussed
below, it is more convenient to use the form in (10.47).

It is clear from (10.47) that the T̂4 vertex arises in third order. To de-
termine its initial contribution to the energy, we note that it affects the T̂2

amplitudes through diagram D12, (10.45), and, since one interaction vertex
is involved in this diagram, the effect here is of fourth order. When substi-
tuted in the energy equation (10.20), the result is a fifth-order contribution
to the energy.

The CCSDTQ-1 model, as defined by (10.47) plus the inclusion of diagram
D12 in the doubles equation, is correct through fifth order in the energy. It
requires the evaluation of ∼ n 4

hn 4
p amplitudes, each of which involves at

most np terms (it is the first term on the r.h.s. of (10.47), corresponding
to diagram Q1a), resulting in an ∼n 4

hn 5
p procedure. As in other cases, the

quadratic terms in (10.47) (diagrams Q5a–Q5c) can be factored and so do not
raise the computational cost. Specifically, for the sum in the first quadratic
term, diagram Q5a, we can first sum over e,

Sabcf
ij = P̂ (a/bc)

∑
e

〈bc‖ef〉tae
ij for all a > b > c, f, i > j,

and then evaluate

Q5a = 1
2 P̂ (d/abc|ij/kl)

∑
f

Sabcf
ij tfd

kl for all a > b > c > d, i > j > k > l,

an ∼n 4
hn 5

p procedure. In contrast, the complete CCSDTQ model results in
an ∼n 4

hn 6
p procedure and requires the storage of ∼n 4

hn 4
p T̂4 amplitudes.

In non-HF cases we employ semicanonical orbitals to avoid the need to
include the off-diagonal part of diagrams Q2a and Q2b and thus the need
to store the T̂4 amplitudes, in analogy to CCSDT-1. In CCSDTQ-1 the
T̂4 amplitudes can be calculated on the fly during the processing of the
doubles equation, but the T̂3 amplitudes need to be stored. Note that the
T̂4 contributions to the triples equation (10.43) (Fig. 10.8) result in energy
contributions of sixth order for diagrams T11a–T11c and seventh order for
diagrams T12a–T12c (eighth order in the HF case) and may thus be left out
of CCSDTQ-1. A higher-level CCSDTQ-2 approximation, which is correct
through sixth order in the energy, includes the T̂2T̂3 and T̂ 3

2 terms in the
quadruples equation (Kucharski and Bartlett 1993).

Analogously to the noniterative approximations for the triple-excitation
contributions to CCSDT, we can also introduce a noniterative approxima-
tion for the quadruple-excitation contributions to CCSDTQ (Kucharski and
Bartlett 1989, 1998c). We can obtain the fifth-order energy contribution of
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the connected quadruple excitations by substituting diagram D12, (10.45),
into the energy equation (10.20); then, using the factorization techniques
we get

∆E
(5)
Q = 〈0|Ŵ R̂0Ŵ T̂

(3)
4 |0〉C =

(3)

=
1
2

{
(3)

+
(3)

}

=
1
32

∑
abcd
ijkl

{
〈ij‖ab〉

εab
ij

〈kl‖cd〉 +
〈kl‖cd〉

εcd
kl

〈ij‖ab〉
}

tabcd
ijkl

=
1
32

∑
abcd
ijkl

{ 1
εab
ij

+
1

εcd
kl

}
〈ij‖ab〉〈kl‖cd〉tabcd

ijkl

=
1
32

∑
abcd
ijkl

〈ij‖ab〉
εab
ij

〈kl‖cd〉
εcd
kl

εabcd
ijkl tabcd

ijkl . (10.48)

Substituting for the last two factors from (10.47), we can write the result in
the compact form

∆E
(5)
Q = 1

2

〈
0
∣∣(T̂ †(1)

2

)2[
Ŵ (T̂3 + 1

2 T̂ 2
2 )

]∣∣0〉
C

. (10.49)

As in the CCSD(T) case, we can assume that closing the diagram with
a final converged T̂ †

2 vertex instead of its first-order approximation would
provide a superior approximation. This is borne out by numerical studies
(Kucharski and Bartlett 1998c) and alternative derivations based on the CC
energy functional to be discussed in Section 12.7. The final estimate is the
Qf (factorized quadruples) correction,

∆E
[5]
Qf

= 1
2

〈
0
∣∣T̂ †

2 T̂
†(1)
2

[
Ŵ (T̂3 + 1

2 T̂ 2
2 )

]∣∣0〉
C

. (10.50)

A very important feature of this approximation is that it requires only an
∼ n 3

hn 4
p evaluation for the T̂3 part and roughly ∼ n6 for T 2

2 , instead of
the ∼ n 4

hn 5
p process of CCSDTQ-1. Since this approximation is used as a

noniterative addition to a CCSDT calculation, the ultimate rate-determining
step is in CCSDT itself, which is an ∼n 3

hn 5
p process. The method is termed

CC5SDT(Qf), indicating that it is fifth order in quadruples and infinite
order in SDT. It does not change for non-HF cases, so it has the same
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invariance properties as CC theory and the generalized CC4SD(T) of the
previous section.

The type of factorization introduced here is not intrinsic to coupled-cluster
theory, which does not have T̂ † terms in its defining equations. It derives
from simplifications that are inherent in perturbation theory, related to
Wigner’s 2n + 1 rule (subsection 2.2.6). To reduce the computational ef-
fort of the CC5SDT(Qf) model further, we can couple (10.50) to one of the
simpler CCSDT-n approximations.

Attempting to extend the Qf approach from the noniterative CCSDT(Qf)
contribution to the iterative CCSDTQ-1 model, we soon encounter the
problem that the factorization of the T̂4 energy diagram in (10.48) can-
not be applied strictly to the corresponding wave-function diagram D12,
(10.45), of the T̂2 amplitude equation. Nevertheless, accepting the ap-
proximate nature of this factorization and replacing [Ŵ T̂4]C|0〉 in diagram
D12 by {1

2 T̂ †
2 [Ŵ (T̂3 + 1

2 T̂ 2
2 )]}C|0〉, as was done for ∆E

(5)
Q in (10.50), the

T̂4 contribution to the double-excitation amplitude equation is replaced
by 1

2〈ab
ij |T̂

†
2 [Ŵ (T̂3 + 1

2 T̂ 2
2 )]|0〉C. The resulting model, labeled CCSDTQf-1

(Kucharski and Bartlett 1998c), incorporates the leading quadruple excita-
tion effect in the amplitude equations without requiring any T̂4 diagrams or
T̂4 equations. A lower-level approximation, CCSDQf, is obtained by adding
1
4〈ab

ij |T̂
†
2 Ŵ T̂ 2

2 |0〉C to the CCSD doubles equation, thus approximately incor-
porating a leading T̂4 contribution without including any T̂3 or T̂4 diagrams
or equations.

The Qf approximations involve a factorization of a connected-cluster dia-
gram that is reminiscent of the factorization of linked quadruple-excitation
diagrams in the fourth-order MBPT energy (Section 7.2). These approx-
imations also indicate the potential for augmentation of the standard CC
approach through alternative methods that involve the T̂4 operator, such
as the unitary CC (UCC), the expectation value CC (XCC) and the ex-
tended CC Ansätze (Bartlett, Kucharski, Noga et al. 1989, Kutzelnigg 1977,
Arponen and Bishop 1991, Van Voorhis and Head-Gordon 2000). Similar
approaches could possibly be applied to T̂3 but, unlike T̂4, the factorization
of T̂3 would depend on T̂1, which has a less important role in electron cor-
relation than in orbital rotation (see Sections 12.2 and 12.3). However, the
same approach can be applied to the T̂6 connected-cluster contributions to
the T̂3 equation. At that level we would formally have a CCSDT procedure
with implicit contributions from the connected T̂4 and T̂6 operators.

The iterative CCSDTQf-1 model and the noniterative CCSDT(Qf) =
CC5SDT(Qf) and CCSD(TQf) = CC4SD(TQf) approximations have been
applied to prototypical problems such as the vibrational frequencies of O3
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(Kucharski and Bartlett 1999) and the harmonic vibrational frequencies of
N2 and C2, for which an accuracy of 1 cm−1 relative to full CI was achieved
after contributions from the fourth-order T̂5 operator had been included
(Musia�l, Kucharski and Bartlett 2000).

10.7 Coupled-cluster effective-Hamiltonian
diagrams

A major reduction in the number of diagrams for the CC amplitude equa-
tions can be achieved by using diagrams representing the CC effective Hamil-
tonian H = (ĤNeT̂ )C. These diagrams also provide valuable guidance for
the efficient reuse of intermediates in the calculations.

The CC effective Hamiltonian can be expanded in terms of contributions
with different numbers of creation and annihilation operators:

H =
[
HN(1 + T̂1 + T̂2 + . . . + 1

2 T̂ 2
1 + T̂1T̂2 + 1

2 T̂ 2
2 + · · · )

]
C

= χ0 +
∑
pq

χpq{p̂†q̂} +
∑
pqrs

χpqrs{p̂†q̂†ŝr̂}

+
∑

pqrstu

χpqrstu{p̂†q̂†r̂†ût̂ŝ} + · · · . (10.51)

Here the constant term χ0 = ∆E corresponds to the P̂HP̂ contribution,
given diagrammatically in (10.20). This expansion separates H into zero-
body, one-body, two-body etc. terms. For an N -electron system the ex-
pansion terminates with the N -body term. Each term in (10.51) can be
separated into parts involving different allocations of hole and particle in-
dices. Thus, for the one-body term we have

∑
pq

χpq{p̂†q̂} =
∑
ab

χab{â†b̂} +
∑
ai

χai{â†î} +
∑
ai

χia{̂i†â} +
∑
ij

χij {̂i†ĵ} .

(10.52)
Using wavy lines to represent the H vertices, we can diagram the various

terms of the one-body contribution (10.52) as follows:

χia {̂i†â} ≡
i a

=
i a

× +
i a

, (10.53)
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χab {â†b̂} ≡ a

b
=

a

b
× +

a

b
+ a

b
× + a

b
+ a

b

=
a

b
× +

a

b
+ a

b
+ a

b
,

(10.54)

χij {̂i†ĵ} ≡ j

i
=

j

i
× +

j

i
+ j

i
× + j

i
+ j

i

=
j

i
× +

j

i
+ j

i
+ j

i
,

(10.55)

χai {â†î} ≡
a i

=
a i × +

a i
+ a

i
×+ i

a
×+ a

i

+ i
a

+ i
a

+ a
i

+ a i ×

+ a
i× + a

i
+ a

i

+ i
a

+ a i + a i .

(10.56)

The second lines in equations (10.54) and (10.55) utilize the previously de-
termined χia, replacing the third and fifth diagrams in each case by a single
effective-Hamiltonian diagram. This substitution is an example of the use
of intermediate quantities in the calculations and provides an efficient it-
erative strategy for the solution of the CC equations. An added benefit
of the use of these intermediates is the conversion of the nonlinear equa-
tions into a pseudolinear equation in which each term contains an integral
or intermediate multiplied by a single t amplitude.

The set of diagrams in the diagrammatic expansion of χai, (10.56), is
exactly the set that appears in the CC singles equations, comprising Fig. 10.2
and (10.31). In fact, the CC singles equation can be written as

a i
= 0 (for all a, i). (10.57)

Thus, this matrix element of H represents the entire equation.
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When we try to use intermediates from (10.53)–(10.55) in the expansion
(10.56) we run into a complication: the third, fifth, tenth, eleventh and
twelfth diagrams add up to

a
i

. (10.58)

The fourth, sixth, tenth, eleventh and thirteenth diagrams add up to

i
a

. (10.59)

If we used both these diagrams in the expansion we would be including twice
the tenth and eleventh diagrams, which add up to

a
i

.

To avoid this overcounting we define an intermediate,

χ′
ij {̂i†ĵ} ≡ j

i
=

j

i
× +

j

i
+ j

i
. (10.60)

Using this intermediate we can rewrite (10.55), (10.56) as

χij {̂i†ĵ} ≡ j

i
=

j

i
+ j

i
, (10.61)

χai {â†î} ≡
a i

=
a i × +

a i
+ a

i
+ i

a

+ i
a

+ a
i

+ a i + a i .

(10.62)

In (10.62) the third diagram represents the sum of the third, fifth and twelfth
diagrams of (10.56), the fourth represents the sum of the fourth, sixth, tenth,
eleventh and thirteenth diagrams of (10.56) and the seventh represents the
sum of the ninth and fourteenth diagrams of (10.56). This representation
provides a compact pseudolinear form for the CC singles equation. The two-
body matrix elements and intermediates are obtained in a similar manner:

χijab {̂i†ĵ†b̂â} ≡
i a jb

=
i a jb

(10.63)



10.7 Coupled-cluster effective-Hamiltonian diagrams 331

χ′
aibc {â†î†ĉb̂} ≡ a

b c i
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a

b c i
+

1
2 a

b c i
, (10.64)

χaibc {â†î†ĉb̂} ≡ a

b c i
=

a

b c i
+ a

b c i
, (10.65)

χ′
ikja {̂i†k̂†âĵ} ≡ j

i ak
=

j

i ak
+

1
2 j

i ak
, (10.66)

χikja {̂i†k̂†âĵ} ≡ j

i ak
=

j

i ak
+ j

i ak
, (10.67)
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(10.70)
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(10.71)
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(10.72)
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(10.73)

χajib {â†ĵ† b̂̂i} ≡
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c

b i

=
a

c

b i
+

a

c

b
i +

a

c

i
b +

a

c

b
i

+ a
c

i
b + a

c
ib× +

a

c
b i

+ a c

i
b + a

c
ib + a

c
b i

+ a c
b

i + a
c
b

i + a c b i

=
a

c

b i
+

a

c

b
i +

a

c

i
b + a

c
ib

+
a

c
b i + a c

i
b + a c b i ,

(10.76)

χ′
iajk {̂i†â†k̂ĵ} ≡ j
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k a
=
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i

k a
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k
a, (10.77)
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(10.79)

The interpretation rules for these diagrams are the same as those for
the ordinary CC diagrams, Fig. 10.1, including the use of permutation
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operators P̂ (ij · · · |ab · · · ) etc. for inequivalent open-line labels, according
to rules 8 and 9, but labels on lines open at the top are never permuted with
labels of lines open at the bottom. For example, the permutation operator
P̂ (ab) = 1 − P̂ab is applied to the second diagram for χabcd in the second
line of (10.69), but in the third diagram the same operator cancels with
the factor due to the pair of equivalent vertices. The intermediates χ′

aibc

etc. are needed to avoid overcounting and to obtain the correct weights for
diagrams with equivalent T̂ vertices. For example, if we had used the full
expression for χikja in the second diagram in the third line of (10.70), in-
stead of the intermediate χ′

ikja, then the permutation operator P̂ (kl) would
have introduced the third diagram of the second line in two equivalent
forms.

Like the case of the final one-body matrix element χai, (10.56), the final
two-body matrix element χabij expands to a sum of all the CC double-
excitation diagrams, Figs. 9.2, 10.3, 10.4 and (10.45), and should add up to
zero when the CC equations are satisfied. Using the various matrix elements
and intermediates, it condenses to the pseudolinear form

χabij {â†b̂†ĵ î} ≡
ia j b

=
ia j b

+ ia j
b

+ i a b
j

+ i
a b

j +
i

a b
j

+ i a
b j

+ i
a b j

+ a
i j b

+ ia j b

+ ia j
b

+ ai b
j

+ ia j b .

(10.80)

This form is untruncated, and no additional double-excitation diagrams
would appear at any level of CC theory. Obviously, the last three dia-
grams would not be included in a CCSD calculation and the last diagram
would be omitted in CCSDT. The corresponding untruncated three-body
matrix element, which is equal to the sum of all the diagrams for the triple-
excitation equations (Figs. 10.5 and 10.8 plus one diagram involving T̂5), can
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be expressed in pseudolinear form in terms of the same effective-Hamiltonian
matrix elements and intermediates as

χabcijk {â†b̂†ĉ†k̂ĵî} ≡
ia j b c k

= ai jb k
c

+ a i j b c
k

+ a i j
b c

k + ai
j

b c
k

+ a i j b
c k

+ a i j
b c k

+ ai b
j k c

+ ai jb k c

+ ai jb k
c

+ a i bj c
k

+ ai jb k c . (10.81)

The last four diagrams would not be included a CCSDT calculation, and
the last diagram would be left out in CCSDTQ.

This approach was extended to CCSDTQ by Kucharski and Bartlett
(1992) and to CCSDTQP (including T̂5) by Musia�l, Kucharski and Bartlett
(2002a). Musia�l, Kucharski and Bartlett (2002b) described the general di-
agrammatic structure of the CC equations and obtained algebraic formulas
for the number of diagrams of each type at each level, including the number
of effective-Hamiltonian diagrams.

To represent the quadruple-excitation equation in a pseudolinear form we
define four three-body intermediates:

χ′
abcdij {â†b̂†ĉ†ĵ îd̂} ≡ a

d

b i j c

=
1
2

a

d

b
i j c +

a

d
b i j c

+ a
d

i
b c j + a

d
b i j c , (10.82)
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χ′
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χ′
ibcajk {̂i†b̂†b̂†k̂ĵâ} ≡
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jb ck
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ka bl , (10.84)

χ′
ijaklm {̂i†ĵ†â†k̂l̂m̂} ≡ k

i

l

j

am
= k

i
l

j
am . (10.85)

These intermediates are parts of the complete three-body matrix elements
of H, which are presented later in this section.

Using these intermediates, the untruncated four-body matrix element that
defines the quadruple-excitation equation, representing all the diagrams in
Fig. 10.9 plus diagrams containing T̂5 or T̂6, is obtained as:

χabcdijkl {â†b̂†ĉ†d̂† l̂k̂ĵ î} ≡
ia j b c k l d

= a i j b c k l
d

+ ai b j k c d
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c d
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k c l

d + ai jb k c ld
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+ a i j b kc l
d

+ ai b j k c d
l

+ ai jb k c ld . (10.86)

For later use in Chapters 11 and 13, we also present below the diagrams
for the complete three-body and some four-body matrix elements of H. Note
that there can be no H-matrix elements with four or more lines below the
vertex, except for the single two-body element = , because
T̂ -vertex lines can only be open at the top. The three-body elements are:

χajbcdi {â†ĵ†b̂†îd̂ĉ} ≡ a

c j d

ib
=

j d
a

c
ib , (10.87)

χijakbl {̂i†ĵ†â† l̂b̂k̂} ≡ k
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b j
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i
al , (10.88)

χibcajk {̂i†b̂†ĉ†k̂ĵâ} ≡
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am , (10.91)
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χiabjkl {̂i†â†b̂† l̂k̂ĵ} ≡ j
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Only three four-body vertices will be needed. They are:

χakbcdeij {â†k̂†b̂†ĉ†ĵ îêd̂} ≡ a

d k e
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=

k e
a

d
ib j c ,

(10.94)

χijabkclm {̂i†ĵ†â†b̂†m̂l̂ĉk̂} ≡ k

i cj

l a mb
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i
al mb ,

(10.95)
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10.8 Results of various CC methods compared
with full CI

It is very helpful to have some numerical data on the relative contributions
of the various cluster operators and on the effects of the various approxima-
tions used in introducing correlation corrections. The most unambiguous
assessment of the quality of the different models is provided by comparison
with full-CI results using the same basis set, since full CI represents the ex-
act results within the Hilbert space generated by the chosen basis set. The
full-CI energy is a variational upper bound to the exact energy, is exactly
extensive and is invariant under the choice of the molecular orbitals span-
ning the basis-set space. Thus the full-CI results are solely determined by
the basis set.

Full-CI calculations require all possible excitations among any orbitals
that are not frozen. For N electrons and n orbitals, the total number of
determinants in a full-CI expansion is given asymptotically by ∼nN . Con-
sequently, only a comparatively few full-CI calculations are available for use
as benchmarks and almost none of these use basis sets better than polarized
double-zeta (DZP). Taking the example of H2O with the inner-shell electrons
on the oxygen atom frozen, a DZP basis contains a minimum of 23 func-
tions for the eight valence electrons. While this type of basis is not sufficient
for high-accuracy results, it is still expected to provide realistic indicators
of the comparative merits of various approximations. In fact, comparisons
with full CI are more useful for the assessment of the effectiveness of various
correlation methods than comparisons with experimental data. Not only
do such comparisons separate correlation-method contributions from basis-
set effects, but they also avoid the questions of experimental uncertainties,
corrections for zero-point vibrations, the Born–Oppenheimer approximation
and relativistic effects.
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In Table 10.5 results are given for CI, MBPT and CC for DZP (double-
zeta + polarization) basis sets at various levels of correlation treatment for
the FH and H2O molecules at their equilibrium bond length Re and at
1.5Re and 2.0Re. The inner-shell pair of electrons on the heavier atom is
frozen in these calculations, leaving the eight valence electrons to be cor-
related. The stretched geometries place great demands upon RHF-based
single-reference treatments, since the restricted Hartree–Fock reference func-
tion does not separate correctly to neutral atoms, making the correlation
error much greater at stretched geometries than at Re.

As pointed out previously, the principal difference between CI methods on
the one hand and MBPT and CC methods on the other is that the CI energy
retains unlinked diagram contributions and, consequently, is not extensive
until the full-CI limit is reached. Since the MBPT and CC theories are built
upon the linked-diagram theorem, these methods benefit from the elimina-
tion of non-extensive terms at the outset. We can see the magnitude of this
effect by comparing CID with CCD. Unlike MBPT, both these methods
are of infinite order but the mean absolute error of CCD for the examples
in Table 10.5 is a factor 2 better than that of CID. Furthermore, when
single excitations are added the improvement in the mean absolute error of
CCSD relative to CISD is a factor 3. When triple-excitations are added,
we find that the mean absolute error for CCSDT is about 1 mEh, while
CISDT is still 22 mEh above full CI on average. When we add quadruple
excitations, the CISDTQ model achieves a dramatic reduction in the er-
ror compared to CISDT, since it now includes the disconnected quadruple
excitation terms that serve to eliminate the most important unlinked term
(see subsection 5.7.4). The part that remains is small for these small exam-
ples, but not quite negligible since CCSDTQ reduces the error by a factor
30 compared with CISDTQ, to 0.05 mEh. For much larger molecules (or
assemblies of molecules), the unlinked diagram error in CISDTQ would be
much larger than in the examples presented here, eventually accounting for
most of the correlation energy as the size of the system increases.

As confirmed by the presence of some negative-energy errors the MBPT
and CC methods, unlike CI, are not variational, but this deficiency is a
small price to pay for extensivity. While variational methods provide an
upper bound to the total energy, there are no bounds on any energy differ-
ences of interest in chemistry and physics, and therefore the advantage of a
variational method is of lesser consequence than the extensivity property of
the many-body methods for most practical applications.

As seen from the diagrammatic expansions, MBPT models can be viewed
as finite-order approximations to various levels of CC theory. The difference
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Table 10.5. Energy errors (in millihartrees), relative to full CI, for
truncated CI calculations, many-body perturbation theory and

coupled-cluster models for FH and H2O in a DZP basis with frozen core at
three bond lengthsa

FH H2O Mean
abs.

Re 1.5Re 2.0Re Re 1.5Re 2.0Re error

Configuration interactionb

CID 10.3 18.6 35.5 13.7 34.5 84.8 32.9
CISD 9.38 14.9 27.6 12.9 30.4 75.6 28.5
CISDT 7.01 11.1 19.2 10.6 23.5 60.3 22.0
CISDTQ 0.28 0.49 0.92 0.40 1.55 6.29 1.66
CISDTQP 0.08 0.16 0.28 0.16

MBPTc

MBPT(2) 7.80 10.6 24.0 13.0 23.3 53.7 22.1
MBPT(3) 5.44 11.9 27.0 7.22 26.4 74.6 25.4
MBPT(4)SDQ 2.75 5.39 12.5 4.40 13.3 34.2 12.1
MBPT(4) −0.26 0.77 4.84 0.92 5.76 14.9 4.58
MBPT(5) 0.81 2.29 8.10 0.70 4.98 17.0 5.65
MBPT(6) −0.23 −0.41 −1.13 0.08 1.82 4.06 1.29

Coupled clusterd

CCD 3.76 8.13 21.9 5.01 15.9 40.2 15.8
CCSD 3.01 5.10 10.2 4.12 10.2 21.4 9.01
CCSD(T) 0.40 0.88 −0.26 0.72 2.09 4.63 1.50
CCSDT-1 0.17 0.49 0.22 0.60 1.99 −2.65 1.02
CCSDT 0.27 0.65 1.13 0.53 1.78 −2.47 1.14
CC5SDT[Q] 0.06 0.11 0.30 0.05 −0.02 −0.75 0.22
CC5SDTQ-1 0.06 0.11 0.35 0.05 −0.03 −1.58 0.36
CCSDTQ 0.02 0.04 0.06 0.02 0.14 −0.02 0.05
CCSDTQP 0.00 0.00 0.00 0.00 0.03 0.03 0.01

aGeometries, basis sets and FCI energies are from Bauschlicher, Langhoff, Taylor
et al. (1986) and Bauschlicher and Taylor (1986).

bKállay and Surján (2000, 2001).
cKucharski and Bartlett (1995).
dKucharski and Bartlett (1992), Musia�l, Kucharski and Bartlett (2002a).

between these approaches is that infinite order is used for selected terms
in CC theory whereas a given finite order is used for all terms in MBPT.
While MBPT rapidly improves with increasing order relative to CI because
of the absence of unlinked diagrams, its errors are substantially greater than
those for the comparable CC models. For pairs of methods that are accu-
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Table 10.6. Energy errors (in millihartrees), relative to full CI, for
coupled-cluster calculations in a cc-pVDZ basis and frozen core for N2 at

several bond lengths, using RHF and UHF reference functions.a.

Bond length (in Å)

Method 1.1208b 1.2700 1.4288 1.5875 1.9050 2.2225

RHF reference function

CCSD 14.469 21.481 31.807 45.188 72.223 40.698
CCSD(T) 1.866 3.087 5.182 7.700 −6.030 −165.014
CCSDT 1.839 3.631 6.834 10.310 −15.948 −113.131
CCSDT(Qf) 0.295 0.349 0.038 −1.558 3.548
CCSDTQ 0.229 0.572 1.368 2.396 0.5
CCSDTQP 0.021
CCSDTQPH 0.002

UHF reference function

CCSD 14.469 22.035 31.981 36.351 21.968 9.630
CCSD(T) 1.866 6.376 12.997 20.503 15.088 6.926
CCSDT 1.839 3.923 6.964 10.011 7.486 3.123
CCSDTQ 0.229 0.651 1.438 3.014 4.341 1.913
CCSDTQP 0.021 0.141 0.348 0.819 2.353 1.144
CCSDTQPH 0.002 0.073 0.134 0.202 0.744 0.827

aRHF-based CCSD, CCSD(T) and CCSDT results, except for R = 2.2225 Å, from
Krogh and Olsen (2001); all other results are from Chan, Kállay and Gauss (2004)
and Musia�l and Bartlett (2005).

bEquilibrium bond length. The RHF and UHF wave functions are identical
at this point.

rate to the same order of perturbation theory, such as MBPT(3) and CCD,
MBPT(4)SDQ and CCSD and MBPT(4) and CCSDT, the CC models give
results that are several millihartrees better for the examples in Table 10.5.
This difference holds also for the models that are correct through fifth or-
der, as may be seen by comparing MBPT(5) with CCSDTQ-1. Only in
sixth order does MBPT(6) narrow the gap with CCSDTQ. The compar-
ative closeness of the results for these two models is the reason why non-
iterative or perturbative corrections added to an underlying CC model are
expected to be effective. In particular, CCSD(T) tends to retain the infinite-
order advantages of CCSD versus MBPT(4)SDQ, while the perturbative
triples estimate in CCSD(T) is consistent with the improvement of MBPT(4)
relative to MBPT(4)SDQ. The iterative form of this approximation,
CCSDT-1, is a little better for energies but can overcorrect in difficult cases
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since it is fundamentally a linear approximation for the triple-excitations
effect. The (T) approximation is no better but, because it is purely per-
turbative, i.e. triple-excitation amplitudes are not allowed to change the T̂1

and T̂2 amplitudes, the correction does not become excessive.
Although the energy results in Table 10.5 reflect the increased sophis-

tication of the methods quite well, on their own they are an inadequate
measure of the quality of an approximation. For example, potential-energy
surfaces behave differently at large values of the internuclear distances and in
the vicinity of the equilibrium geometry, and perturbation approximations
fail for the stretched geometries if the reference function does not separate
correctly. The infinite-order CC methods, even with approximations like
CCSDT-1, do much better than MBPT at large R, though they still fail
eventually as the bonds are stretched further since then the reference func-
tion becomes a very poor initial approximation. Several examples of this
type of behavior are shown elsewhere (Bartlett 1989), along with results for
other properties beside the energy that are pertinent to quantum-chemical
applications.

A case that is particularly demanding for single-reference methods is the
description of the stretching and breaking of a triple bond. The results of
such calculations for the nitrogen molecule in a cc-pVDZ basis (Dunning
1989) at several bond lengths are shown in Table 10.6 (Krogh and Olsen
2001, Chan, Kállay and Gauss 2004, Musia�l and Bartlett 2005). The first
set of results in this table is based on an RHF reference function and de-
teriorates badly as the bond is stretched, producing energies far below the
full-CI values. For CCSDTQ and higher levels the iterative procedures con-
verge very slowly or fail to converge at all beyond the equilibrium bond
length. Using a UHF reference function eliminates the long-range problems;
however, it produces relatively poor results with high spin contamination at
intermediate distances and a discontinuity in the energy derivatives at the
point at which the RHF and UHF reference functions start to differ from
each other, just beyond the equilibrium bond length, 2.118a0. Also included
in this table are RHF-based CCSDT(Qf) results (Musia�l and Bartlett 2005),
which show increasing deviations from the CCSDTQ values as the bond is
stretched. Potential energy curves for some RHF-based CC results are shown
in Fig. 10.10. It is seen in both the table and the potential energy plots that
the CCSD(T) and CCSDT(Qf) models are good approximations for CCSDT
and CCSDTQ, respectively, at the shorter bond length but deteriorate as
the bonds get longer.

The coupled-cluster techniques were extended to five-fold excitations by
Musia�l, Kucharski and Bartlett (2000, 2002a). Higher-order results were
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Fig. 10.10. Potential energy curves for N2 with RHF reference.
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obtained by non-diagrammatic methods for some small examples for which
the full-CI Hamiltonian matrix was available in a determinantal represen-
tation (Hirata and Bartlett, 2000). Methods for the automated generation
of formulas and computer programs for high-order coupled cluster calcu-
lation have also been reported (Janssen and Schaefer 1991, Li and Paldus
1994, Kállay and Surján 2000, 2001, Hirata 2003, 2004, Auer, Baumgartner,
Bernholdt et al. 2006). Some of these include automated optimization of
the computational procedures, including a choice of intermediates.



11

Calculation of properties in coupled-cluster theory

11.1 Expectation value for a CC wave function

The exponential form of the coupled-cluster wave function requires an ap-
proach to the calculation of properties other than the energy that is different
from that for more conventional wave functions, such as those in Hartree–
Fock or CI. The expectation value O (also written 〈Ô〉) of an operator Ô is
given by

O =
〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 . (11.1)

When |Ψ〉 = eT̂ |0〉, this expression gives rise to series expansions in the
numerator and denominator:

O =
〈0|eT̂ †

ÔeT̂ |0〉
〈0|eT̂ †eT̂ |0〉

=

〈
0
∣∣[1 + T † + 1

2!(T
†)2 + 1

3!(T
†)3 + · · ·

]
Ô

[
1 + T + 1

2!T
2 + 1

3!T
3 + · · ·

]∣∣0〉
〈
0
∣∣[1 + T̂ † + 1

2!(T̂
†)2 + 1

3!(T̂
†)3 + · · ·

][
1 + T̂ + 1

2! T̂
2 + 1

3! T̂
3 + · · ·

]∣∣0〉 .

(11.2)

Individually, the expansions for eT̂ †
and eT̂ in the numerator and denomi-

nator terminate when the total excitation level in the product of T̂ operators
in any term exceeds the number of electrons in the CC wave function, in
contrast with the behavior of the expansions in the CC amplitude equations,
which always terminate after the product of four T̂ operators. Thus, even
if we evaluated the numerator and denominator separately and then divide
the results, the number of terms in each expansion and the computational
effort required could be very high. Furthermore, the use of an expression
involving a denominator can be inconvenient for some applications.

347
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In fact, division by the denominator can be carried out formally, by factor-
ing the numerator (Č́ıžek 1969). For this purpose we examine each expan-
sion diagrammatically, beginning with the denominator. The T̂ operator is
a sum of connected terms T̂1+T̂2+· · · , but products of T̂ operators produce
disconnected terms and thus the factor eT̂ |0〉 contains both connected and
disconnected (but not unlinked) diagrams. The products arising from the
expansion of 〈0|eT̂ †

eT̂ |0〉 take the general form

1
m!n!

〈0|(T̂ †)mT̂n|0〉

=
∑

0<i1 �=i2 �=···
0<j1 �=j2 �=···
k1+k2+···=m
l1+l2+···=n

k1i1+k2i2+···
=l1j1+l2j2+···

1
k1!k2! · · · l1!l2! · · ·

〈0|(T̂ †
i1

)k1(T̂ †
i2

)k2 · · · (T̂j1)
l1(T̂j2)

l2 · · · |0〉 ,

(11.3)

resulting in closed diagrams in which the de-excitations in the T̂ † factors
cancel the excitations in the T̂ factors.

To take several examples,

〈0|T̂ †
2 T̂2|0〉 = = 1

4

∑
ijab

tab ∗
ij tab

ij , (11.4)

〈0|T̂ †
2

1
2!(T̂1)2|0〉 = = 1

2

∑
ijab

tab ∗
ij tai t

b
j , (11.5)

〈0|T̂ †
2 T̂ †

1 T̂3|0〉 = = 1
4

∑
ijkabc

tab ∗
ij tc ∗k tabc

ijk , (11.6)

〈0|T̂ †
2 T̂ †

1 T̂1T̂2|0〉 = + + +

= 1
4

∑
ijab

tab ∗
ij tab

ij

∑
kc

tc ∗k tck +
∑

ijkabc

tb ∗j tac ∗
ik tab

ij tck

− 1
2

∑
ijkabc

tac ∗
ij tb ∗k tab

ij tck − 1
2

∑
ijkabc

tab ∗
ik tc ∗j tab

ij tck . (11.7)
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Analogs of the above diagrams are obtained for the numerator. If

Ô =
∑
pq

〈p|ô|q〉p̂†q̂ =
∑
pq

opqp̂
†q̂

=
∑
pq

opq

(
{p̂†q̂} + p̂†q̂

)
=

∑
pq

opq{p̂†q̂} +
∑

i

oii = ÔN + 〈0|Ô|0〉 (11.8)

is a one-particle operator, its expectation value can be split into a reference
value and a correlation correction,

O = 〈0|Ô|0〉 + ON = Oref + ∆O . (11.9)

With the normal-ordered part ÔN represented diagrammatically by

ÔN = ♦ + ♦ + ♦ + ♦ , (11.10)

the numerator of (11.2) will contain terms like

〈0|T̂ †
2 T̂ †

1 ÔNT̂2|0〉 = (a) (i)(j) (b)
(k) (c)

♦ + (j) (b)(a) (i)
(k) (c)

♦

+ (a) (i)(j)
(k)

(b)

(c)

♦ + (i) (a)(b)
(c)

(k)

(j)
♦

= 1
4

∑
ijab

tab ∗
ij tab

ij

∑
kc

tc ∗k ock +
∑

ijkabc

tb ∗j tac ∗
ik tab

ij ock

− 1
2

∑
ijkabc

tac ∗
ij tb ∗k tab

ij ock − 1
2

∑
ijkabc

tab ∗
ik tc ∗j tab

ij ock . (11.11)

Factorization of the numerator requires independent summation over all
indices, thus introducing exclusion-principle-violating (EPV) terms. There
are two types of EPV contribution in these diagrams. Equal labels on lines
connected to the same T̂ †

i or T̂i vertex produce zero contributions because
of the antisymmetry of the tab...

ij... amplitudes in the upper and lower indices,
respectively, and thus such terms can be included freely in the summations.
All other EPV terms can be shown to cancel. Taking (11.11) as an example,
it is easily seen that terms with k = j cancel between the first and fourth
diagrams and between the second and third diagrams. Similarly, terms with
c = b cancel between the first and third and between the second and fourth
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diagrams. The differences in the weights of these terms are accounted for
by line equivalences in the respective diagrams; thus k = i is equivalent
to k = j in the first diagram, providing two identical contributions with
weight 1

4 each to cancel a single contribution with weight −1
2 in the fourth

term. Similarly, k = i is also equivalent to k = j in the third diagram,
providing two identical contributions with weight −1

2 each to cancel a single
contribution with weight 1 in the second diagram.

In the expansion of the numerator, terms in which the total excitation
level l1j1 + l2j2 + · · · (see (11.3)) in the product of T̂j factors exceeds the
number of electrons N are necessarily EPV terms, since there are no more
than N distinct hole states to excite. Such terms either vanish (because
of the repetition of indices in any amplitude) or mutually cancel. Thus we
can safely ignore the termination of the expansion by excitation level. The
resulting nonterminating form of the expansion is necessary for complete
factorization of the numerator.

The complete diagrammatic expansion of the numerator will contain both
connected and disconnected closed diagrams, each of which has exactly one
connected part containing the operator ÔN and any number (zero or more)
of parts that do not contain this operator. Because of the inclusion of EPV
terms and the related non-terminating form of the diagrammatic expansion,
each disconnected diagram is simply equal to the product of the individual
connected parts in it. Each part containing the ÔN operator will appear in
the expansion of the numerator with all possible combinations of parts that
do not contain this operator and thus it can be written as a product of the
former part times the expansion of the denominator. Therefore the entire
numerator can be written as the product of the sum of its connected terms
multiplied by the denominator,

〈0|eT̂ †
eT̂ |0〉〈0|eT̂ †

ÔNeT̂ |0〉C .

The first factor in this expression cancels the denominator, producing the
result (first given in Č́ıžek 1969)

ON =
〈0|eT̂ †

ÔNeT̂ |0〉
〈0|eT̂ †eT̂ |0〉

= 〈0|eT̂ †
ÔNeT̂ |0〉C . (11.12)

The final (connected) result retains EPV terms that, in the original nu-
merator, canceled between connected and disconnected terms. These un-
canceled EPV terms prevent the expansion (11.12) from terminating, since
multiple excitations or de-excitations of the same hole state may now occur.
As a result, evaluation of the expectation value in this form requires trunca-
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tion at some level and prevents exact determination of the expectation value.
On another level, the nonterminating nature of the result may be explained
as due to the implicit series expansion of the inverse of the denominator, as
in the expansion of (1 + A)−1.

The result (11.12) is valid for all normal-ordered operators, not just for
one-electron operators. When the operator ÔN is the normal-product
Hamiltonian ĤN = Ĥ − 〈0|Ĥ|0〉, (11.12) gives the correlation energy,

∆E =
〈0|eT̂ †

ĤNeT̂ |0〉
〈0|eT̂ †eT̂ |0〉

= 〈0|eT̂ †
ĤNeT̂ |0〉C . (11.13)

Provided that the T̂ operator is the exact solution of the untruncated CC
equations, this result is consistent with the normally used CC expression
(10.11) for the correlation energy, ∆E = 〈0|ĤNeT̂ |0〉C = 〈0|e−T̂ ĤNeT̂ |0〉.
We can show the equivalence of these forms by inserting eT̂ (P̂ + Q̂)e−T̂ = 1̂
into the expectation-value form:

∆E =
〈0|eT̂ †

ĤNeT̂ |0〉
〈0|eT̂ †eT̂ |0〉

=
〈0|eT̂ †

eT̂ (P̂ + Q̂)e−T̂ ĤNeT̂ |0〉
〈0|eT̂ †eT̂ |0〉

=
〈0|eT̂ †

eT̂ |0〉〈0|e−T̂ ĤNeT̂ |0〉
〈0|eT̂ †eT̂ |0〉

= 〈0|e−T̂ ĤNeT̂ |0〉 = 〈0|H|0〉 . (11.14)

This follows because the CC equations require that Q̂H|0〉 = 0, (10.13).
The equivalence is exact only when T̂ is the solution of the untruncated CC
equations. If T̂ is truncated to a particular excitation level, say T̂1 + T̂2, the
CC equations for higher cluster operators, such as T̂3, are not satisfied and
thus Q̂H|0〉 = 0 is not strictly valid.

For properties represented by the expectation values of any operators for
which the wave function is an eigenfunction, such as Ŝ2 or Ŝz, we formally
have the same equations as for Ĥ, provided that a corresponding analog
of the second equation in (10.13), such as Q̂e−T̂ Ŝ2eT̂ |0〉 = 0, holds. Other
than for a closed-shell system with doubly occupied orbitals, the CC equa-
tions do not always produce a spin eigenfunction, making it necessary to
impose that condition when this aspect is important (Szalay and Gauss
1997, 2000). As an alternative, a spin-adapted formulation of CC theory
based on the unitary group approach was given by Li and Paldus (1994,
1997). Other approaches to the at least approximate imposition of spin
conditions have also been used (Neogrády, Urban and Hubač 1992, 1994,
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Jayatilaka and Lee 1993, Stanton and Gauss 1994, Bartlett 1995, Urban,
Neogrády and Hubač 1997). For expectation values of other operators, such
as those representing dipole and quadrupole moments, electric field gra-
dients or the kinetic energy, a general route toward their evaluation can
be provided by introducing a density matrix, as will now be described in
Section 11.2.

11.2 Reduced density matrices

The evaluation of the expectation values of one-electron operators is facili-
tated by the use of the one-body reduced density matrix

γ(x, x′) =
N

〈Ψ|Ψ〉

∫
Ψ(x, x2, x3, . . . , xN )Ψ∗(x′, x2, x3, . . . , xN )dx2dx3 · · · dxN

=
∑
pq

φq(x)γqpφ
∗
p(x

′) , (11.15)

where each of x, x2, . . . stands for the set of space and spin coordinates of
an electron and, in the second line,

γqp =
〈p̂Ψ|q̂Ψ〉
〈Ψ|Ψ〉 =

〈Ψ|p̂†q̂|Ψ〉
〈Ψ|Ψ〉 (11.16)

are the elements of the discrete matrix representation γ of the continuous
matrix γ(x, x′) in the one-electron (spinorbital) basis. For the particular
case of CC theory,

γqp =
〈0|eT̂ †

p̂†q̂eT̂ |0〉
〈0eT̂ †eT̂ |0〉

= 〈0|eT̂ †
p̂†q̂eT̂ |0〉C . (11.17)

The expectation value of the one-electron operator (11.8) is given by

O =
∑
pq

opq〈0|eT̂ †
p̂†q̂eT̂ |0〉C =

∑
pq

opqγqp . (11.18)

In terms of the continuous form of the density matrix this result can be
obtained as

O = tr Ôγ =
∫

ô(x)γ(x, x′)|x′=xdx

=
∑
pq

∫
ô(x)φq(x)γqpφ

∗
p(x

′)|x′=xdx =
∑
pq

opqγqp ,
(11.19)
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where it is understood that the substitution x′ = x is carried out after the
operation of ô(x) on γ(x, x′) and before the integration over x. In partic-
ular, the electron density at some space–spin point x′′ is obtained as the
expectation value of the Dirac δ-function operator δ(x′′−x). When inserted
into (11.19) this operator gives

γ(x′′) ≡ γ(x′′, x′′) =
∫

δ(x′′ − x)γ(x, x′)|x′=xdx

=
∑
pq

φq(x′′)γqpφ
∗
p(x

′′) , (11.20)

and the total electron population is obtained by integrating over x′′,∫
γ(x′′)dx′′ =

∑
pq

〈φp|φq〉γpq =
∑

p

γpp = N . (11.21)

For the expectation value of two-electron operators (including the energy)
we need the two-body density matrix,

Γ(x1,x2; x′
1, x

′
2)

=
N(N − 1)
2〈Ψ|Ψ〉

∫
Ψ(x1, x2, x3, . . . , xN )Ψ∗(x′

1, x
′
2, x3, . . . , xN )dx3 · · · dxN

=
∑
pqrs

φr(x1)φs(x2)Γrspqφ
∗
p(x

′
1)φ

∗
q(x

′
2) , (11.22)

where

Γrspq =
〈q̂p̂Ψ|ŝr̂Ψ〉
〈Ψ|Ψ〉 =

〈Ψ|p̂†q̂†ŝr̂|Ψ〉
〈Ψ|Ψ〉 (11.23)

are the elements of the discrete representation Γ of the continuous matrix
Γ(x1, x2; x′

1, x
′
2) in the one-electron (spinorbital) basis. For a two-electron

operator

Ĝ = 1
4

∑
pqrs

〈pq|ĝ|rs〉Ap̂†q̂†ŝr̂ (11.24)

(compare (3.53), (3.60)) we obtain the expectation value

G = 1
4

∑
pqrs

〈pq|ĝ|rs〉AΓrspq . (11.25)
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As can be seen from (11.23), Γrspq has the same symmetry properties with re-
spect to permutation of the indices as antisymmetrized two-electron
integrals,

Γrspq = −Γrsqp = −Γsrpq = Γsrqp = Γ∗
pqrs = −Γ∗

pqsr = −Γ∗
qprs = Γ∗

qpsr

(11.26)
and Γrspp = Γrrpq = Γrrpp = 0.

For the purposes of the diagrammatic representation it is convenient to
limit our attention to the correlation correction of the expectation value,

ON =
∑
pq

opq〈0|eT̂ †{p̂†q̂}eT̂ |0〉C =
∑
pq

opq(γN)qp , (11.27)

where γN is the normal-ordered part of the one-body density matrix, with
elements

(γN)qp = 〈0|eT̂ †{p̂†q̂}eT̂ |0〉C . (11.28)

The only difference between the elements of γN and γ is for the hole–hole
elements,

(γN)ji = 〈0|eT̂ † (̂
i†ĵ − î†ĵ

)
eT̂ |0〉C = γji − δji . (11.29)

When used in the evaluation of the expectation value of a one-electron oper-
ator Ô, this difference provides the vacuum-expectation-value part 〈0|Ô|0〉 =∑

i oii of the total expectation value (11.9).
For the two-body density matrix, using the generalized Wick’s theorem

we obtain

Γrspq = (ΓN)rspq + δpiδri(γN)sq + δqiδsi(γN)rp − δpiδsi(γN)rq − δqiδri(γN)sp

+ δpiδriδqjδsj − δpiδsiδqjδrj , (11.30)

where i, j are any hole-state labels and

(ΓN)rspq = 〈0|eT̂ †{p̂†q̂†ŝr̂}eT̂ |0〉C . (11.31)

Specifically, for different combinations of particles and holes,

Γcdab = (ΓN)cdab ,

Γcdai = (ΓN)cdai ,

Γcdij = (ΓN)cdij ,

Γcjai = (ΓN)cjai + δij(γN)ca ,

Γckij = (ΓN)ckij + δkj(γN)ci − δki(γN)cj ,

Γklij = (ΓN)klij + δki(γN)lj + δlj(γN)ki

− δkj(γN)li − δli(γN)kj + δkiδlj − δkjδli .

(11.32)
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All other cases can be obtained by index permutations according to the rules
in (11.26), which apply to ΓN as well as to Γ.

The expectation value G then becomes

G = 1
4

∑
pqrs

〈pq|ĝ|rs〉A(ΓN)rspq

+ 1
4

∑
ipq

(
〈pi|ĝ|qi〉A + 〈ip|ĝ|iq〉A − 〈ip|ĝ|qi〉A − 〈pi|ĝ|iq〉A

)
(γN)qp

+ 1
2

∑
ij

〈ij|ĝ|ij〉A

= 1
4

∑
pqrs

〈pq|ĝ|rs〉A(ΓN)rspq +
∑
pq

g′pq(γN)qp + 1
2

∑
ij

〈ij|ĝ|ij〉A , (11.33)

where g′pq is given by (3.174). The three sums in this equation correspond
to the three terms ĜN, Ĝ′

N and 〈0|Ĝ|0〉 of (3.173), respectively.
In the diagrammatic representation of contributions to the one-body den-

sity matrix (11.28) we need a symbol for the operator {p̂†q̂}, which represents
the generic (property-independent) part of the general one-electron opera-
tor expression (11.8). Here we will represent this operator by the markerless
one-electron vertex , which may be construed as a place-holder for
the operator representing the actual property being calculated. Adding a
marker, such as ♦, corresponds to multiplication by the corresponding prop-
erty integral opq and summation over p, q (but obviously the density matrix
elements need to be calculated only once for any number of one-electron
properties). In a common notation, a gap is left in place of this vertex;
sometimes a dotted line is added across the gap or the vertex is marked
with the label 1′ → 1. It is to be understood that the two lines connected
to the vertex carry fixed labels that identify the specific matrix element of
γ and are not summed over. The indices on γqp correspond to the labels on
the incoming and outgoing lines at the vertex, in that order.

In the evaluation of the expression (11.28) we need to contract the opera-
tors p̂† and q̂ with operators in the expansions of 〈0|eT̂ †

at the top and eT̂ |0〉
at the bottom. Symbolically, we can represent this process by the schematic
diagram

(γN)qp =
p

q
(11.34)
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where the box represents the 〈0|eT̂ †
and eT̂ |0〉 parts and the slopes of the p

and q lines have no significance in this case. In terms of the time sequence,
the vertex has to appear between the T̂ † operators at the top and the
T̂ operators at the bottom. As for any one-electron quantity, the first index
on γqp represents an outgoing line in the diagram relative to the respective
box (incoming relative to the vertex) and the second index represents an
incoming line relative to the box. More specifically, the density matrix
elements (γN)qp fall into four types, depending on whether each of p and q

represents a particle or hole label. Symbolically,

γba =

eT̂

eT̂ †

b

a
, (γN)ji =

eT̂

eT̂ †

i

j
, γia =

eT̂

eT̂ †

a i
, γai =

eT̂

eT̂ †

i a .

(11.35)

The {p̂†q̂†ŝr̂} operator for the two-body density matrix will be represented
by the double-dashed vertex . The corresponding schematic diagrams
for the matrix elements of ΓN take the forms

Γcdab =

eT̂

eT̂ †

c

a

d

b
, (ΓN)klij =

eT̂

eT̂ †

i

k

j

l
, (ΓN)ibaj =

eT̂

eT̂ †

a i
j b ,

Γidab =

eT̂

eT̂ †

a i
d

b
, (ΓN)akij =

eT̂

eT̂ †

i a
k

j
etc., (11.36)

the indices on Γrspq corresponding to the labels on the lines at the vertex in
the order left–in, right–in, left–out, right–out.

It is convenient to classify the various contributions to the density matrices
according to the perturbation order in which they first arise. As shown in
Section 9.4, the T̂m operators can be resolved into MBPT wave-function
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components of different orders and each T̂m operator can be characterized
by the lowest PT order in which it arises. The T̂2 operator is first order, T̂1

is second order in the HF case and first order otherwise, T̂3 is second order
and so on.

Diagrams representing contributions from the various T̂ † and T̂ operators
to the particle–hole and particle–particle elements of the one-body density
matrix through fourth order in the general (non-HF) case are shown in
Figs. 11.1 and 11.2, respectively. Arrows are shown explicitly only when
different distinct arrow assignments are possible. Diagram 1 corresponds
to the leading term (i.e. the number 1) in the series expansion of eT̂ †

. In
the general case diagram 1 is first order, diagram 2 is second order, 3–7 are
third order and 8–19 are fourth order. Looking at Fig. 11.2, diagrams 20 and
21 are second order, 22 and 23 are third order and 24–41 are fourth order.
Since the density matrix is Hermitian, γpq = γ∗

qp, we need to calculate only
one of every pair of complex-conjugate off-diagonal elements. Therefore the
hole–particle diagrams, which are conjugate (Section 5.5) to the particle–
hole diagrams, are not shown. The hole–hole diagrams are obtained from
the particle–particle diagrams by the reversal of all arrows. It is important

i a
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i a

2

ai
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i a
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ai
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ia
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i a
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ai
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Fig. 11.1. Diagrams representing contributions to the particle–hole element γai of
the one-body reduced density matrix through fourth order.
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Fig. 11.2. Diagrams representing contributions to the particle–particle element γba

of the one-body reduced density matrix through fourth order.

to note that each of the particle–particle diagram pairs (22, 23), (26, 28),
(27, 29) and (30, 31) in Fig. 11.2 are not conjugate to each other, because
the fixed labels move with their lines in the conjugation process. Thus these
diagram pairs represent different contributions to the same matrix element.

The first few terms in the algebraic expressions for the density matrix
elements are easily obtained from Fig. 11.1 and 11.2 (the order of the terms
in these expressions corresponds to the order of the diagrams in the figures):
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∑
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∑
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(11.37)
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∑
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Fig. 11.3. The MBBPT diagrams representing contributions to the particle–hole
and particle–particle element of the one-body reduced density matrix through
second order.

The coefficient 1
24 for diagram 25 in the latter two equations derives from

a factor 1
(3!) for a set of three equivalent lines times a factor 1

2 for each of a
pair of equivalent lines.

Using the MBPT expansions (9.93)–(9.95) etc. for the T̂m operators, we
can generate the MBPT expansion for the density-matrix elements to any
order. As an example, the diagrams for this expansion for the particle–hole
and particle–particle elements to second order are shown in Fig. 11.3. The
first eight diagrams in this figure represent γai and the last two represent γba.
The first seven diagrams originate in the second-order MBPT expansion of
diagram 1 of Fig. 11.1, the eighth originates from diagram 2 and the last
two originate from diagrams 20 and 21, respectively, of Fig. 11.2.

The first diagram in Fig. 11.3 provides the only first-order contribution
to the density matrix. When a Hartree–Fock reference function (canonical
or otherwise) is used, this diagram vanishes since fia = fai = 0 in this case.
Only the second, third and last diagrams survive in the HF case. All the
diagrams in this figure originate in the T̂1 and T̂2 cluster operators (and
their adjoints) in Figs. 11.1 and 11.2 and thus can be evaluated in a CCSD
calculation. Hence the CCSD-derived density matrix is correct to second
order, with many higher-order contributions included. The only other clus-
ter operator in these figures is T̂3, and therefore the CCSDT-derived density
matrix is correct through fourth order. All the diagrams that contain a T̂3

vertex in Figs. 11.1 and 11.2 except diagram 7 require the second-order com-
ponent only of the T̂3 operator to achieve fourth-order accuracy. Diagram
7 requires the third-order component of T̂3 for this purpose, and since this
component is missing in the CCSDT-1 model (Section 10.5), this model pro-
duces a density matrix that is only accurate through third order. Similarly,
the noniterative approximations to CCSDT-1, i.e. CCSD[T] and CCSD(T),
also provide density matrices correct through third order.
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A diagrammatic treatment of the two-body density matrix will be de-
ferred to Section 11.7, pending the development of more effective tools for
its evaluation. The CC wave function and the diagrammatic expansion of
the density matrices can be used effectively to evaluate expectation values to
any desired order of perturbation theory. This approach (Noga and Urban
1988) has only rarely been used but is sometimes a useful alternative to the
definitive method discussed in the following sections. The nonterminating
nature of the expansions and consequent lack of a closed-form expression and
need for truncation are seen as serious disadvantages for the expectation-
value approach from a formal viewpoint. The following sections describe the
alternative, response, treatment for property evaluation, which is based on
treating properties as responses to perturbations. The response treatment
has become the standard approach to this problem.

11.3 The response treatment of properties

As an alternative to the use of expectation values, it is possible to evalu-
ate properties in terms of the response of the molecular system to a suit-
able perturbation (Monkhorst 1977, Jørgensen and Simons 1983, Bartlett
1986). In fact, many molecular properties, such as derivatives of the energy
with respect to displacements of the nuclei (energy gradients, Hessians etc.),
cannot be represented simply by an expectation value but require a response
treatment.

A Hamiltonian that depends on a parameter λ can be expanded in a
Maclaurin series in λ:

Ĥ(λ) = Ĥ(0) + λ
dĤ

dλ

∣∣∣∣
λ=0

+
1
2
λ2 d2Ĥ

dλ2

∣∣∣∣
λ=0

+ · · ·

= Ĥ(0) + λĤ(1) + λ2Ĥ(2) + · · · , (11.40)

where

Ĥ(n) =
1
n!

dnĤ

dλn

∣∣∣∣
λ=0

. (11.41)

Here the unperturbed Hamiltonian Ĥ(0) = Ĥ(0) is the usual molecular
Hamiltonian, including electron correlation, and the parameter λ represents
the strength of a perturbation (such as an electric or magnetic field or the
displacement of a nucleus). This expansion can be seen as a generalization of
the usual perturbation expression Ĥ = Ĥ0 + λV̂ , in which the perturbation
is linear in λ, with Ĥ(1) = V̂ , Ĥ(2) = Ĥ(3) = · · · = 0.
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The energies corresponding to the Hamiltonian (11.40) can also be ex-
panded in λ:

E(λ) = E(0) + λ
dE

dλ

∣∣∣∣
λ=0

+
1
2
λ2 d2E

dλ2

∣∣∣∣
λ=0

+ · · ·

= E(0) + λE(1) + λ2E(2) + · · · , (11.42)

with a similar expansion for the wave function. When these expansions are
substituted into the Schrödinger equation and terms of first order in λ are
collected, we obtain the first-order equation(

Ĥ(0) − E(0)
)
|Ψ(1)〉 +

(
Ĥ(1) − E(1)

)
|Ψ(0)〉 = 0 . (11.43)

Projecting this equation onto 〈Ψ(0)| and noting that 〈Ψ(0)|Ĥ(0) = 〈Ψ(0)|E(0),
we find

E(1) =
dE(λ)

dλ

∣∣∣∣
λ=0

=
〈Ψ(0)|Ĥ(1)|Ψ(0)〉

〈Ψ(0)|Ψ(0)〉 , (11.44)

so that the expectation value of Ĥ(1), which is the expectation value of
the property operator Ô when Ĥ(λ) = Ĥ(0) + λÔ, can be obtained as the
derivative of the energy with respect to λ at λ = 0.

When the perturbation is due to an electric field �E, the perturbation
operator is given by the dot product −�E ·

∑
µ qµ�rµ, where qµ and �rµ are

the charges and position vectors of the particles in the system. The first
derivatives of the perturbed energy E(E) with respect to the components
of the field strength provide the components of the permanent dipole mo-
ment vector, d

(0)
a = −∂E(E)/∂Ea|E=0 (a = x, y, z). This result is consis-

tent with the expectation-value form �d(0) = 〈Ψ|
∑

µ qµ�rµ|Ψ〉/〈Ψ|Ψ〉. The
second derivatives provide the components of the dipole polarizability ten-
sor, αab = −∂2E(E)/∂Ea∂Eb|E=0, and higher derivatives provide the re-
spective hyperpolarizabilities. Properties obtained as nth derivatives of the
perturbed energy are referred to as nth-order properties.

Equation (11.44), which is a manifestation of the Hellmann–Feynman the-
orem, is exact only for a variationally optimized |Ψ(0)〉 and thus holds only
for full (untruncated) CC. The numerical differences between the expecta-
tion value and the energy derivative at several levels of truncated CC were
examined for the dipole moment of BH by Noga and Urban (1988).

The conceptual difference between an expectation value and the equiva-
lent energy derivative is quite important in MBPT and CC theory, because
the derivative form leads to closed-form expressions for properties. This
form also allows the calculation of properties using energies that do not nec-
essarily correspond to a wave function, such as those obtained in CCSD(T).
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The derivatives can also be evaluated by finite difference methods, using
CC calculations at small positive and negative values of λ, but analytical
evaluation, as described in the following analysis, is more accurate and more
efficient particularly when many perturbations have to be considered, as in
the case of energy gradient calculations.

Splitting the perturbed correlated Hamiltonian into its normal-product
part and its vacuum expectation value,

Ĥ(λ) = 〈0|Ĥ(λ)|0〉 + ĤN(λ) = Eref(λ) + ĤN(λ) , (11.45)

the corresponding perturbed correlated energy is given by

E(λ) = Eref(λ) + ∆E(λ) . (11.46)

When Ĥ(λ) = Ĥ(0)+λÔ, using (11.9) the components of the above equation
can be written as

Eref(λ) = Eref(0) + λOref ,

∆E(λ) = ∆E(0) + λ∆O .
(11.47)

The evaluation of Eref(λ) is considered in Section 11.8; we shall concentrate
here on the evaluation of ∆E(λ).

Using the CC effective Hamiltonian H = e−T̂ ĤNeT̂ , the perturbed CC
correlation energy, see (10.13), can be written in the form

∆E(λ)P̂ = P̂H(λ)P̂ . (11.48)

The derivative of H(λ) with respect to λ can be obtained as

dH
dλ

=
d

dλ

(
e−T̂ ĤNeT̂

)
= −T̂ λH + e−T̂ Ĥλ

NeT̂ + HT̂ λ = H[λ] + [H, T̂ λ] ,
(11.49)

where

H[λ] ≡ e−T̂ Ĥλ
NeT̂ . (11.50)

The superscript λ indicates the derivative with respect to λ, and we have
used the fact that the excitation operators in T̂ λ and T̂ commute. For a
linear perturbation, with Ĥ(λ) = Ĥ(0) + λÔ, we have H[λ] = e−T̂ ÔNeT̂ .
The energy derivative is obtained as

d∆E

dλ
P̂ ≡ ∆EλP̂ = P̂H[λ]P̂ + P̂ [H, T̂ λ]P̂ . (11.51)

The derivatives T̂ λ of the perturbed amplitudes can be eliminated from
(11.51), leading to a much more convenient expression for the derivative
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of the correlation energy. Inserting P̂ + Q̂ = 1̂ and using P̂HP̂ = ∆E P̂ ,
Q̂HP̂ = 0, the second term of (11.51) becomes

P̂ [H, T̂ λ]P̂ = P̂H(P̂ + Q̂)T̂ λP̂ − P̂ T̂ λ(P̂ + Q̂)HP̂

= ∆E P̂ T̂ λP̂ + P̂HQ̂T̂ λP̂ − ∆E P̂ T̂ λP̂ − 0 = P̂HQ̂T̂ λP̂ ,

(11.52)

and the perturbed correlation energy takes the form

∆EλP̂ = P̂H[λ]P̂ + P̂HQ̂T̂ λP̂ . (11.53)

Similarly, taking the derivative of the amplitude equations (10.13) gives

Q̂H[λ]P̂ + Q̂[H, T̂ λ]P̂ = 0 . (11.54)

Inserting P̂ + Q̂ = 1̂, the second term becomes

Q̂[H, T̂ λ]P̂ = Q̂H(P̂ + Q̂)T̂ λP̂ − Q̂T̂ λ(P̂ + Q̂)HP̂

= Q̂HP̂ T̂ λP̂ + Q̂HQ̂T̂ λP̂ − T̂ λP̂HP̂ − T̂ λQ̂HP̂

= Q̂
(
Q̂HQ̂ − ∆E0

)
Q̂T̂ λP̂ .

The perturbed amplitudes are then obtained as

Q̂T̂ λP̂ = Q̂
(
∆E0 − Q̂HQ̂

)−1
Q̂H[λ]P̂ . (11.55)

Inserting this expression into the perturbed correlation energy (11.53), we
have

∆EλP̂ = P̂H[λ]P̂ + P̂HQ̂
(
∆E0 − Q̂HQ̂

)−1
Q̂H[λ]P̂ , (11.56)

in which T̂ λ has been eliminated.
Defining an effective resolvent operator R(λ) based on H(λ),

R(λ) = Q̂[∆E(λ) − Q̂H(λ)Q̂]−1Q̂ ≡ Q̂

∆E(λ) −H(λ)
, (11.57)

we have

∆E(λ)P̂ = P̂H[λ]P̂ + P̂HRH[λ]P̂ . (11.58)

When λ = 0 this equation provides the first-order energy,

∆E(1)P̂ = P̂H[λ](0)P̂ + P̂H(0)R(0)H[λ](0)P̂ . (11.59)

Finally, recognizing that P̂HRQ̂ contains no derivatives (and is thus in-
dependent of the perturbation at the point λ = 0), we introduce a new
operator (Bartlett 1986, Salter, Trucks and Bartlett 1989),

Λ(λ) = P̂H(λ)R(λ)Q̂ , (11.60)
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so that we can write

∆EλP̂ = P̂ (1 + Λ)H[λ]P̂ . (11.61)

Integrating this expression over λ we obtain ∆E P̂ = P̂ (1+Λ)HP̂ , which is
the fundamental energy functional of CC theory (Section 11.4).

Inversion of the denominator in (11.57) will not be required, because it
is to be replaced by a solution of a system of simultaneous linear equations
for Λ, as described in Section 11.5 below. Because this system of equations
is solved at λ = 0, it is independent of the perturbation and needs to be
solved only once for any number of perturbations. Once Λ is known, the
first-order properties can be obtained in closed form.

Unlike the equivalence shown between the transition and expectation-
value forms for the energy, this derivation does not depend upon Q̂HP̂ = 0
for all possible excitations; rather, the derivation of (11.53), (11.55) remains
correct for any truncation of T̂ as long as the same truncation is applied
consistently in all equations (including the original calculation of the unper-
turbed energy and amplitudes). Thus this procedure is applicable for any
of the CC models discussed in Chapter 10 and for any order of perturbation
theory. Furthermore, since correspondence between a wave function and an
energy is not required in this analysis, these equations can equally well be
applied for methods such as CCSDT-1, but they need some modification for
two-step methods such as CCSD(T) (Lee and Rendell 1991; Watts, Gauss
and Bartlett 1992, 1993).

It should be emphasized that Λ(0) needs to be computed once only; this
is followed by the evaluation of its dot product with Q̂H[λ]P̂ for any number
of properties. The significance of this aspect is obvious when there are many
perturbations, as in the case of analytical gradients of potential-energy sur-
faces when about 3N independent atomic displacements for the N atoms in a
molecule need to be considered. If one had to compute all 3N T̂ λ perturbed
amplitudes, rather than evaluating the dot products of a single Λ with the
set of Hλ derivatives, coupled-cluster theory would not have become the
exceptional tool it now is for applications to molecular potential-energy sur-
faces. This procedure, a manifestation of the interchange theorem familiar
from double perturbation theory (Sternheimer and Foley 1953, Dalgarno and
Stewart 1958, Hirschfelder, Byers-Brown and Epstein 1964), is what makes
analytical derivatives viable in the non-variational CC theory (Adamowicz,
Laidig and Bartlett 1984, Bartlett 1986, Scheiner, Scuseria, Rice et al. 1987,
Salter, Trucks and Bartlett 1989).
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11.4 The CC energy functional

We shall now derive the results of the previous section in a different way,
based on a stationarity requirement of a functional. Such an approach is con-
venient for the calculation of derivatives, including the extension to higher
derivatives, because certain derivatives vanish when the functional is made
stationary, so that a generalized Hellmann–Feynman theorem is applicable.

Consider a functional of Λ and T̂ defined by

E(Λ, T̂ ) = P̂E(Λ, T̂ )P̂ = P̂ (1 + Λ)e−T̂ ĤNeT̂ P̂ . (11.62)

At this point nothing is said about the nature of Λ and T̂ , except that they
(and ĤN) depend on λ and that Λ is a de-excitation operator while T̂ is an
excitation operator:

ΛP̂ = 0 , Λ = ΛQ̂ , P̂ T̂ = 0 , T̂ = Q̂T̂ . (11.63)

Noting (11.63), the variation of the functional with respect to its arguments
is given by

P̂ δEP̂ = P̂ δΛ Q̂HP̂ + P̂ (1 + ΛQ̂) δ(e−T̂ ĤNeT̂ ) P̂

= P̂ δΛ Q̂HP̂ + P̂ (1 + ΛQ̂)[H, δT̂ ]P̂ , (11.64)

where H = e−T̂ ĤNeT̂ . Requiring that this functional be stationary with
respect to both Λ and T̂ , we set the coefficients of δΛ and δT̂ to zero. For
the first term we find

Q̂HP̂ = 0 , (11.65)

so that requiring that E be stationary with respect to Λ corresponds to
satisfying the CC amplitude equations. With this result, and with ∆EP̂ =
P̂HP̂ , the second term of (11.64) can be transformed to

P̂ [H, δT̂ ]P̂ + P̂ΛQ̂ [H, δT̂ ]P̂ = P̂
(
H + ΛQ̂H− ∆EΛ

)
Q̂ δT̂ P̂ .

Setting the coefficient of Q̂ δT̂ P̂ to zero yields

P̂HQ̂ + P̂ΛQ̂(H− ∆E)Q̂ = 0 . (11.66)

When the stationarity conditions are satisfied we have

P̂EP̂ = P̂ (1 + Λ)HP̂ = P̂HP̂ = ∆E P̂ , (11.67)

since Λ = ΛQ̂. Thus, when it is stationary the functional E provides the
perturbed correlation energy. These results are correct for all values of λ.
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Furthermore, differentiation of the stationary functional with respect to λ

yields

∆EλP̂ = P̂EλP̂ = P̂ (1 + Λ)H[λ]P̂ , (11.68)

in agreement with (11.61). This result represents a generalized Hellmann–
Feynman theorem, allowing the evaluation of derivatives of the energy in
terms of derivatives of the Hamiltonian without differentiation of the wave
function.

The functional E (Arponen 1983, Salter, Trucks and Bartlett 1989, Szalay
and Bartlett 1992, Bartlett 1995, Szalay, Nooijen and Bartlett 1995), often
written simply as ∆E(Λ, T̂ ) (or E(Λ, T̂ ) when the full Hamiltonian Ĥ is
used instead of ĤN), has been called the fundamental energy functional of
CC theory. It can also be interpreted in terms of a constrained optimization
process in which E is made stationary subject to the satisfaction of the
CC amplitude equations by adding the left-hand sides 〈Φab...

ij... |H|0〉 of these
equations, multiplied by Lagrange multipliers λij...

ab... (see Section 11.5), to
the correlation energy (Koch and Jørgensen 1990). This functional plays
the same role in CC theory as the expectation value of the Hamiltonian,
treated as a functional of the CI excitation operator Ĉ = Ĉ1 + Ĉ2 + · · · ,
plays in CI, where |Ψ〉 = (1 + Ĉ)|0〉. In both cases making the functional
stationary yields the corresponding wave function and energy. In the CC
case the stationarity of E also yields the de-excitation operator Λ.

11.5 The Λ equations

It has been shown in the previous two sections that property values can be
expressed as derivatives of the perturbed energy with respect to a strength
parameter λ at λ = 0 and that these derivatives can be evaluated in terms
of the operator Λ and derivatives of the perturbed Hamiltonian ĤN. Thus
the evaluation of Λ at the point λ = 0 is a key step in property calculations.
Because Λ(0) is independent of the perturbation it needs to be evaluated
only once for any number of properties.

Straightforward evaluation of Λ(0) from (11.60) would involve the non-
diagonal resolvent R(0), which in turn requires inversion of the denominator
Q̂

(
H − ∆E

)
Q̂, but a more efficient procedure is to solve the simultaneous

equations (11.66) for Λ. This approach corresponds to the solution of the
left eigenfunction equation for H,

P̂ (1 + ΛQ̂)(H− ∆E) = 0 , (11.69)
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in which the eigenvalue ∆E and the operator H =
(
ĤNeT̂

)
C

are known from
the solution of the CC amplitude equations. Thus we have a set of linear
simultaneous equations for the components of Λ. On the one hand these
equations resemble the CC amplitude equations in that they are simulta-
neous equations rather than an eigenvalue problem, but on the other hand
resemble the CI equations in that the unknown amplitudes appear linearly,
the energy is not eliminated and they do not arise from the commutator
expansion of an exponential and so are not limited to connected terms.

As in the treatment of T̂ , we expand Λ in single-, double- etc. de-
excitation operators,

Λ = Λ1 + Λ2 + Λ3 + · · · , (11.70)

where

Λ1 =
∑
ia

λi
a{i†a} ,

Λ2 = 1
4

∑
ijab

λij
ab{i

†aj†b} ,

Λn =
1

(n!)2
∑
ij...
ab...

λij...
ab...{i

†aj†b · · · } ,

(11.71)

in these expressions the de-excitation amplitudes λi
a, λij

ab, λijk
abc, . . . are to be

determined. These operators are represented diagrammatically by

i a

λi
a{̂i†â}

,
i a j b

λij
ab{̂i†âĵ†b̂}

,
i a j b k c

λijk
abc{̂i†âĵ†b̂k̂†ĉ}

, etc.

Projecting (11.69) onto P̂ merely reproduces the CC energy expression
(11.67). Projecting it onto Q̂ produces the Λ amplitude equation

P̂ (1 + ΛQ̂)(H− ∆E)Q̂ = 0

or

P̂HQ̂ + P̂ΛHQ̂ − ∆EP̂ΛQ̂ = 0 . (11.72)

Because of the appearance of the energy in these equations the Λ ampli-
tudes could be disconnected. The energy can be eliminated formally by
introducing a commutator for the second term,

P̂ΛHQ̂ = P̂ [Λ,H]Q̂ + P̂H(P̂ + Q̂)ΛQ̂

= P̂
(
ΛH

)
C
Q̂ + ∆EP̂ΛQ̂ + P̂HQ̂ΛQ̂ , (11.73)
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where the subscript C indicates a restriction to connected terms. For future
reference we also note that

P̂ΛHP̂ = P̂ [Λ,H]P̂ + P̂HΛP̂ = P̂
(
ΛH

)
C
P̂ , (11.74)

because ΛP̂ = 0.
Substituting (11.73) into (11.72) cancels the energy-containing term, leav-

ing

P̂HQ̂ + P̂
(
ΛH

)
C
Q̂ + P̂HQ̂ΛQ̂ = 0 (11.75)

or

P̂
(
ĤNeT̂

)
C
Q̂ + P̂

(
Λ

(
ĤNeT̂

)
C

)
C
Q̂ + P̂

(
ĤNeT̂

)
C
Q̂ΛQ̂ = 0 , (11.76)

in which the last term is the only one that is not fully connected, consisting
as it does of a product of two terms. Explicitly, this equation can be written
in the form

〈0|ĤNeT̂ |Φab...
ij... 〉C +

〈
0
∣∣Λ(

ĤNeT̂
)
C

∣∣Φab...
ij...

〉
C

+
∑

k<l<···
c<d<···

〈0|ĤNeT̂ |Φcd...
kl... 〉C〈Φcd...

kl... |Λ|Φab...
ij... 〉 = 0 . (11.77)

The intermediate state |Φcd...
kl... 〉 in the disconnected term must represent a de-

excitation of the initial state |Φab...
ij... 〉, and thus its indices must be a subset

of the indices of that initial state.
Equation (11.77) has to be solved for the Λn amplitudes for all i < j < · · ·

and a < b < · · · . When |Φab···
ij··· 〉 is a singly excited state |Φa

i 〉 the third
term vanishes, since no Q̂-state can be obtained by de-excitation of a singly
excited state, and so the Λ1 equations are fully connected,

〈0|ĤNeT̂ |Φa
i 〉C +

〈
0
∣∣Λ(

ĤNeT̂
)
C

∣∣Φa
i

〉
C

= 0 (11.78)

for all i and a. These equations, truncated to the CCSDT case (T̂ = T̂1 +
T̂2 + T̂3 and Λ = Λ1 +Λ2 +Λ3), are represented by the diagrams in Fig. 11.4.
Diagrams 1 and 2 in this figure represent the first term of (11.78), while
diagrams 3–83 represent the second term. The latter diagrams all have a
single Λ vertex and a single ĤN vertex but may have as many as three T̂

vertices. Specifically, diagrams 3–5 represent Λ1ĤN terms, 6–11 represent
Λ1ĤNT̂1, 12–14 represent Λ1ĤNT̂2, 15–17 represent Λ1ĤN

1
2 T̂ 2

1 , 18 and 19
represent Λ2ĤN, 20–23 represent Λ2ĤNT̂1, 24–31 represent Λ2ĤNT̂2, 32–35
represent Λ2ĤN

1
2 T̂ 2

1 , 36–43 represent Λ2ĤNT̂1T̂2, and 44 and 45 represent
Λ2ĤN

1
3! T̂

3
1 . The remaining diagrams contain T̂3 and/or Λ3 vertices, and

would not be included in a CCSD calculation. The open lines in all these



370 Calculation of properties in coupled-cluster theory

×

1 2

×

3

×

4 5

×

6

×

7 8 9 10 11

12 13 14 15 16 17 18 19 20 21

22 23

×

24

×

25 26 27 28 29 30

31 32 33 34 35 36 37 38

39 40 41 42 43 44 45

46 47 48 49 50 51 52

53 54 55 56 57 58

×

59

×

60 61 62 63 64 65

66 67 68 69 70 71

72 73 74 75 76 77

78 79 80 81 82 83

Fig. 11.4. Diagrams for the Λ1 equations for CCSDT.
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diagrams have the fixed labels a and i. Different values of a and i generate
different equations in the set of simultaneous equations for Λ.

As indicated by the form of the second terms in (11.77) and (11.78), each
T̂ vertex in the diagrams must have a direct connection to the interaction
vertex. Diagrams that would become disconnected if the Λ vertex were
removed, such as

,

do not contribute to the Λ equations. Furthermore, diagrams in which no
open lines connect directly to the interaction vertex, such as

× , × , or ,

contain an embedded Q̂(ĤNeT̂ )C|0〉 component. While not individually van-
ishing, such diagrams add up to zero when the CC amplitude equations are
satisfied and so have been left out of Fig. 11.4 and subsequent diagram sets
for the Λ equations.

When |Φab...
ij... 〉 in (11.77) is a doubly excited state we obtain the Λ2

equations,

〈0|ĤNeT̂ |Φab
ij 〉C + 〈0|ΛĤNeT̂ |Φab

ij 〉C +
∑
c=a,b
k=i,j

〈0|ĤNeT̂ |Φc
k〉C〈Φc

k|Λ|Φab
ij 〉 = 0 ,

(11.79)
represented diagrammatically for the CCSDT case in Fig. 11.5. In this figure
diagram 1 represents the first term in (11.79), the disconnected diagrams 2
and 3 represent the third term, and diagrams 4–71 represent the second
term. Only diagrams 1–32 are needed in the CCSD case. The open lines
in these diagrams carry the labels a, b, i, j and all permutations of a and b

between inequivalent open particle lines and of i and j between inequivalent
open hole lines must be included and also a weight factor 1

2 for any pair
of equivalent T̂ vertices, as in diagrams 31 and 32. As indicated in the
rules of interpretation, Fig. 10.1, this factor can be canceled with one of the
permutation operators.

The disconnected diagrams 2 and 3 represent ĤNΛ1 and ĤNT̂1Λ1, re-
spectively. Following the sequence of the operators in these terms, these
diagrams should be drawn with the time sequences

×
and ,
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Fig. 11.5. Diagrams for the Λ2 equations for CCSDT.
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respectively, clearly showing the intermediate state. However, the sum over
c and k in (11.77) can be expanded as follows,

∑
c=a,b
k=i,j

〈0|ĤNeT̂ |Φc
k〉C〈Φc

k|Λ|Φab
ij 〉

= 〈0|ĤNeT̂ |Φa
i 〉C〈Φa

i |Λ|Φab
ij 〉 + 〈0|ĤNeT̂ |Φb

i〉C〈Φb
i |Λ|Φab

ij 〉

+ 〈0|ĤNeT̂ |Φa
j 〉C〈Φa

j |Λ|Φab
ij 〉 + 〈0|ĤNeT̂ |Φb

j〉C〈Φb
j |Λ|Φab

ij 〉

= 〈0|ĤNeT̂ |Φa
i 〉C〈0|Λ|Φb

j〉 − 〈0|ĤNeT̂ |Φb
i〉C〈0|Λ|Φa

j 〉

− 〈0|ĤNeT̂ |Φa
j 〉C〈0|Λ|Φb

i〉 + 〈0|ĤNeT̂ |Φb
j〉C〈0|Λ|Φa

i 〉

= P̂ (ij|ab)〈0|ĤNeT̂ |Φa
i 〉C〈0|Λ|Φb

j〉 . (11.80)

It is clear that this expression is represented by diagrams 2 and 3, interpreted
as permutation sums of products of their disconnected parts, as drawn with-
out regard for the time sequence in Fig. 11.5.

The diagrams for the Λ3 equations for CCSDT are shown in Fig. 11.6.
The disconnected diagrams 1–3 in this figure represent the third term of
(11.77), which can be put into the form

∑
d,e=a,b,c
l,m=i,j,k

〈0|ĤNeT̂ |Φde
lm〉C〈Φde

lm|Λ|Φabc
ijk〉 +

∑
d=a,b,c
k=i,j,k

〈0|ĤNeT̂ |Φd
l 〉C〈Φd

l |Λ|Φabc
ijk〉 ,

involving both singly and doubly excited intermediate states. When drawn
in the time sequence corresponding to the above expression, the disconnected
diagrams take the forms

,

×
, ,

respectively, also represented as permutation sums of products, as drawn
without regard to time sequence in Fig. 11.6.

While the Λ expansion includes disconnected terms, when the Λ diagrams
are contracted with H to form the diagrammatic representation of the CC
energy functional (11.62) the resulting diagrams are fully connected. Thus
all the CC energies and their derivatives are properly linked and connected,
as required for extensivity.
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Fig. 11.6. Diagrams for the Λ3 equations for CCSDT.

Unlike the T̂ amplitude equations, which are nonlinear, the Λ amplitude
equations are linear in Λ but are still solved iteratively because of their
size. As in the treatment of the T̂ amplitude equations, the diagonal parts
(involving faa and fii) of diagrams containing just the one-electron Hamil-
tonian operator and the Λ operator, i.e. diagrams 3 and 4 of Fig. 11.4 and
diagrams 8 and 9 of Figs. 11.5 and 11.6, are moved to the opposite side of the
equation, resulting in expressions for εa

i λ
i
a, εab

ij λij
ab and εabc

ijkλijk
abc, respectively,

in terms of the other components of Λ.
Comparing the contributions of different perturbation-theory orders to the

diagrams for the Λ equations with the corresponding contributions to the
diagrams for the T̂ amplitude equations, it is easily seen that Λ(1) = T̂ (1)†.
Therefore T̂ † provides a suitable initial approximation to Λ in the itera-
tive solution of the Λ equations. In second order we find a few differences
between the diagrams contributing to the Λ equations and the adjoints of
the diagrams contributing to the T̂ equations. For Λ1 the difference is be-
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tween diagram 2 of Fig. 11.4 and the adjoint of diagram S2a of Fig. 10.2,
so that

εa
i

(
λi(2)

a − t
a(2)∗
i

)
=

(1)

− ×
(1)

= × − ×

=
∑
jb

( 1
εb
j

− 1
εab
ij

)
〈ij‖ab〉fbj = εa

i

∑
jb

〈ij‖ab〉fbj

εab
ij εb

j

, (11.81)

where the thin horizontal lines indicate denominators. As a result we find
that

λi(2)
a = t

a(2)∗
i +

∑
jb

t
ab(1)∗
ij t

b(1)
j . (11.82)

For Λ2 we find

λ
ij(2)
ab = t

ab(2)∗
ij + P̂ (ij)ta(1)∗

i t
b(1)∗
j , (11.83)

owing to the disconnected diagram 2 of Fig. 11.5, which has no counterpart
in the T̂2-equation diagrams of Figs. 9.2 and 10.3. Similarly,

λ
ijk(2)
abc = t

abc(2)∗
ijk + P̂ (i/jk|a/bc)ta(1)∗

i t
bc(1)∗
jk , (11.84)

due to the disconnected diagrams 1 and 2 of Fig. 11.6. Equations (11.82)–
(11.84) can be represented diagrammatically as

(2)
=

(2)
+

(1)

(1)
, (11.85)

(2)
=

(2)
+

(1) (1)
, (11.86)

(2)
=

(2)
+

(1) (1)
. (11.87)

All the second-order differences between Λ and T̂ † involve diagrams that
vanish in the Hartree–Fock case, resulting in Λ(2) = T̂ (2)† and making T̂ †

a particularly effective initial approximation to Λ in the HF case. The
linearized CCSD approximation (LCCSD, analogous to the LCCD approxi-
mation of subsection 9.3.1) and MBPT through fourth order in the energy
(which depends on the second-order wave function) involve linear terms only,
so that in the HF case Λ = T̂ † exactly and separate consideration of Λ is
not required in these approximations.
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11.6 Effective-Hamiltonian form of the Λ equations

Compact forms of the Λ equations can be obtained using the matrix elements
of the effective Hamiltonian (10.51), given in Section 10.7. Expressing the
Λ1 equations for CCSDT in terms of effective-Hamiltonian matrix elements
results in the 22 diagrams given in Fig. 11.7. The numbering of each dia-
gram in this figure corresponds to the numbering of the leading term of its
expansion in terms of the diagrams in Fig. 11.4. The diagrams of Fig. 11.4
accounted for by each diagram of Fig. 11.7 are listed in Table 11.1. Diagram
75 in this figure uses the three-body matrix element defined in (10.87). Its
value does not change if all arrows are reversed; in either form, it expands
into diagram 75 of Fig. 11.4.

All the diagrams in Fig. 11.7 are at most linear or pseudolinear in T̂ .
However, pseudolinearity is less important in the Λ equations, because the
T̂ amplitudes are known before these equations need to be solved.

Expressing the Λ2 equations for CCSDT in terms of effective-Hamiltonian
matrix elements results in the 22 diagrams given in Fig. 11.8. As in the case
of the Λ1 equations, the numbering of each diagram in this figure corresponds

1 3 4 5 18 19 26 27

48 49 50 51 52

53 54 55 56 57

58 59 60 75

Fig. 11.7. Diagrams for the Λ1 equations for CCSDT in terms of effective-
Hamiltonian vertices.
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1 2 4 5 8 9 10

11 12 23 24 33 34

45 46 47 48 55

56 57 58 59

Fig. 11.8. Diagrams for the Λ2 equations for CCSDT in terms of effective-
Hamiltonian vertices.

1 2 4 5 8 9

10 11 12 23 24

Fig. 11.9. Diagrams for the Λ3 equations for CCSDT in terms of effective-
Hamiltonian vertices.

to the numbering of the leading term of its expansion in terms of the dia-
grams in Fig. 11.5. The diagrams of Fig. 11.5 accounted for by each diagram
of Fig. 11.8 are also listed in Table 11.1. Similar results for the Λ3 equations
are shown in Fig. 11.9 and Table 11.1.

The Λ-equation diagrams do not require the use of the various χ′, χ′′, etc.
intermediates of Section 10.7. Permutation factors for labels of open lines
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Table 11.1. Correspondence between the effective-Hamiltonian-based
diagrams for the Λ equations and the original diagrams

H-based H-based
diagram Original diagrams diagram Original diagrams

Λ1 equations (Figs. 11.7 and 11.4)

1 1, 2 50 50, 65, 76, 80
3 3, 7, 8, 14, 17 51 51, 61, 64, 78, 82
4 4, 6, 9, 13, 16 52 52, 62, 63, 79, 83
5 5, 10, 11, 12, 15 53 53, 67

18 18, 20, 23, 25, 28, 31, 32, 54 54, 68
35, 37, 39, 41, 45, 47 55 55, 72

19 19, 21, 22, 24, 29, 30, 33, 56 56, 71
34, 36, 38, 40, 44, 46 57 57, 73

26 26, 42 58 58, 74
27 27, 43 59 59, 69
48 48 60 60, 70
49 49, 66, 77, 81 75 75

Λ2 equations (Figs. 11.8 and 11.5)

1 1 33 33, 35, 38, 40, 41, 44, 49,
2 2, 3 52, 54, 61, 63, 65, 71
4 4, 6 34 34, 36, 37, 39, 42, 43, 50,
5 5, 7 51, 53, 60, 62, 64, 70
8 8, 14, 15, 22, 29 45 45, 66
9 9, 13, 16, 21, 28 46 46, 67

10 10, 17, 18, 25, 30 47 47, 69
11 11, 19, 27, 32 48 48, 68
12 12, 20, 26, 31 55 55
23 23 56 56
24 24 57 57

58 58
59 59

Λ3 equations (Figs. 11.9 and 11.6)

1 1 10 10, 17, 18, 25, 30
2 2, 3 11 11, 19, 27, 32
4 4, 6 12 12, 20, 26, 31
5 5, 7 23 23
8 8, 14, 15, 22, 29 24 24
9 9, 13, 16, 21, 28
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Table 11.2. Correspondence between the T̂ -free diagrams for the
Λ equations in Fig. 11.10 and the diagrams in Figs. 11.7–11.9. Diagrams
not listed, including all Λ3 diagrams, are in one-to-one correspondence

Fig. 11.10 Figs. 11.7–11.9 Fig. 11.10 Figs. 11.7–11.9

Λ1 equations Λ2 equations

26 26, 27, 48 45 45, 46, 55
49 49, 52, 55, 58, 60 + one T̂4 diagram 47 47, 57
50 50, 51, 56, 57, 59 + one T̂4 diagram 48 48, 56
53 53, 54 + one T̂4 diagram

that become closed lines when the diagrams expressing the H vertices are
embedded in the Λ-equation diagrams are automatically accounted for by
the unrestricted summations over internal-line labels.

Using the three-body and four-body matrix elements of H presented in
Section 10.7, we can obtain even more compact representations of the Λ
equations in terms of diagrams in which no T̂ vertices appear explicitly.
These diagrams are given for CCSDT in Fig. 11.10, numbered according
to their leading terms in Figs. 11.7–11.9. The correspondence between the
two sets of diagrams is shown in Table 11.2. As indicated in that table,
each of diagrams 49, 50 and 53 of the Λ1 equation in Fig. 11.10 contains a
T̂4 contribution that should be left out of a CCSDT calculation. These T̂4

contributions are described by the diagrams

, , ,

in order.
The T̂ -free form of the Λ diagrams, as exemplified for CCSDT in Fig. 11.10,

is the most direct representation of the Λ equation (11.75). The first term
of that equation, P̂HQ̂, is represented by the first diagram in each of the Λ1

and Λ2 diagram sets in Fig. 11.10. For the Λn equation, the second term,
P̂ (ΛH)CQ̂, is represented by all connected diagrams that can be drawn
containing a single H vertex below a single Λ vertex, with n pairs of lines
open at the bottom and no lines open at the top. (A pair of open lines
consists of one particle line and one hole line.) Those connected diagrams
in which the H vertex has no open lines connecting directly to it contain
an embedded Q̂HP̂ = 0 factor and may be left out. For the same equation,
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Λ1-equation diagrams

1 3 4 5 18 19 26

49 50 53

Λ2-equation diagrams

1 2 4 5 8 9 10

11 12 23 24 33 34

45 47 48 58 59

Λ3-equation diagrams

1 2 4 5 8 9

10 11 12 23 24

Fig. 11.10. The Λ-equation diagrams for CCSDT in terms of effective-Hamiltonian
vertices without explicit T̂ vertices. The last three diagrams of the Λ1 equation
each contain a T̂4 contribution.
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the third term, P̂HQ̂ΛQ̂, is represented by all diagrams containing one H
vertex and one Λ vertex disconnected from each other, with a total of n

pairs of lines open at the bottom and no lines open at the top.
Using this analysis, the treatment can be extended to higher CC levels.

Extension to CCSDTQ requires adding diagrams with Λ4 vertices and pos-
sibly higher-order H vertices to the Λ1–Λ3 equations and generating the
corresponding Λ4-equation diagrams. Additional intermediates would also
need to be defined to facilitate efficient implementation of the calculations.
In general, to generate diagrams describing the contributions of Λm vertices
to the Λn equation, we need to use H vertices with n∨ − n∧ = 2(m − n),
where n∨ and n∧ are the number of lines connecting to the H vertex from
above and from below, respectively. As noted previously, n∧ < 4 except for
the two-body vertex, for which n∧ = 4 is also possible.

11.7 Response treatment of the density matrices

For coupled-cluster energy derivatives, and particularly for geometric deriva-
tives of the potential-energy surface (gradients, Hessians etc.), it is impor-
tant to maintain consistency between the energy calculations and
the derivative calculations. Thus, for the correlation component of the
energy derivatives we need the derivatives of the CC energy functional
(11.62) rather than the derivatives of the correlation-energy expectation
value (11.13). The density matrices appropriate for the determination of
these derivatives are obtained by replacing the factor eT̂ †

of (11.28), (11.31)
by the factor (1 + Λ)e−T̂ of the CC energy functional, resulting in

(γN)qp = 〈0|(1 + Λ)e−T̂ {p̂†q̂}eT̂ |0〉 =
〈
0
∣∣(1 + Λ)

(
{p̂†q̂}eT̂

)
C

∣∣0〉
C

, (11.88)

(ΓN)rspq =
〈
0
∣∣(1 + Λ)

(
{p̂†q̂†ŝr̂}eT̂

)
C

∣∣0〉
C

, (11.89)

noting (11.74). These matrices are referred to as response density matrices,
to emphasize their origin in the CC energy derivatives treatment. Because
of their linearity in Λ, they have the important benefit that they lead to
finite expansions for any level of CC rather than the infinite expansions for
the expectation-value forms seen in (11.37)–(11.39).

The diagrams for the hole–particle, particle–hole and particle–particle
elements of the one-body response density matrix for the CCSDT case are
shown in Fig. 11.11. Except for diagram 1′, they are a subset of the dia-
grams in Figs. 11.1 and 11.2, with the top T̂ † vertex replaced by a Λ vertex,
and are numbered correspondingly. Diagrams 14a and 14b have no coun-
terparts in Fig. 11.1, because they are higher than fourth order in MBPT.
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Fig. 11.11. Diagrams representing the hole–particle γia (1′), the particle–hole γai

(1–14b) and the particle–particle γba (20–25) elements of the one-body response
density matrix for CCSDT.

Diagrams with more than than one T̂ † vertex do not have a Λ counterpart,
because of the linearity in Λ of the density matrix formula. Because of this
linearity, the diagrams in Figs. 11.11 present untruncated expressions for
the corresponding density-matrix elements for CCSDT. Also missing from
the Λ-based diagrams are any diagrams that would become disconnected if
the Λ vertex were removed, such as the counterparts of diagrams 4, 8 and 13
of Fig. 11.1, because of the connectedness restriction in (11.88). Diagram 1′

represents the hole–particle element γia = λi
a and is the only surviving dia-

gram arising from the adjoints of the diagrams of Fig. 11.1. Diagrams for the
hole–hole matrix elements (γN)ji can be obtained by reversing all arrows in
the particle–particle diagrams in Fig. 11.11 and replacing the particle labels
a, b by hole labels j, i, respectively.

The asymmetry with respect to time inversion in the expansions obtained
for the hole–particle (diagram 1′) and particle–hole (diagrams 1–14b) ele-
ments is a manifestation of the non-Hermiticity of the CC energy functional
and the corresponding Λ-based expressions for the density matrices, (11.88),
(11.89). As a result, the response density matrices are not exactly Hermi-
tian. Examination of the contributions of different MBPT orders to the
hole–particle and particle–hole elements readily shows that γia = γ∗

ai in first
order. At second order we find

γ
(2)
ai =

i a
(2)

+
i a

(1)

(1)
= t

a(2)
i +

∑
jb

t
ba(1)
ji λ

j(1)
b = t

a(2)
i +

∑
jb

t
ba(1)
ji t

b(1)∗
j ,

(11.90)

γ
(2)
ia =

i a
(2)

= λi(2)
a = t

a(2)∗
i +

∑
jb

t
ba(1)∗
ji t

b(1)
j , (11.91)



11.7 Response treatment of the density matrices 383

by (11.82), so that γ
(2)
ia = γ

(2)∗
ai . As seen from diagrams 20 and 21 of

Fig. 11.11, the particle–particle and hole–hole blocks of γ do not have
first-order contributions, and they are Hermitian in second order because
Λ(1) = T̂ (1)†. Thus we see that γ is Hermitian at second order also.

For the two-body density matrix we find from (11.12) that some of the
index-permutation relationships (11.26) still hold:

Γrspq = −Γrsqp = −Γsrpq = Γsrqp . (11.92)

In general, Γrspq �= Γ∗
pqrs. The diagrams for the two-body response density

matrix for CCSDT are shown in Fig. 11.12 for the pppp, ppph, phpp, pphh,
hpph and hhpp elements, where p and h stand for particle and holes, re-
spectively. Diagrams for hhhp, hphh and hhhh can be obtained by reversing
all arrows on the diagrams for ppph, phpp and pppp, respectively. The re-
maining matrix-element types can be obtained from matrix elements of the
above diagrams using (11.92).

The pphh and hhpp blocks of Γ are the only blocks that have first-order
contributions (from diagrams 21 and 66 of Fig. 11.12, respectively), and
clearly are Hermitian conjugates of each other in that order. They also are
Hermitian conjugates of each other in second order,

Γ(2)
abij = a i j b

(2)
+ a i j b

(1) (1)
= t

ab(2)
ij + P̂ (ij)ta(1)

i t
b(1)
j , (11.93)

Γ(2)
ijab = a i j b

(2)
= λ

ij(2)
ab = t

ab(2)∗
ij + P̂ (ij)ta(1)∗

i t
b(1)∗
j , (11.94)

by (11.83), so that Γ(2)
ijab = Γ(2)∗

abij . All other blocks involve only Λ(1) and
T̂ (1) in second order and, because Λ(1) = T̂ (1)†, the pppp, hhhh, phph and
hphp blocks of Γ are clearly Hermitian at second order, and the hpph and
phhp blocks are Hermitian conjugates of each other at second order. Only
one diagram contributes at second order to each ppph and phpp block, and
these blocks are also Hermitian conjugates of each other at second order. A
similar result is obtained for the hhhp and hphh blocks, the pphp and hppp
blocks, and the hhph and phhh blocks. Therefore Γ is Hermitian in second
order.

The deviation from Hermiticity of the response density matrices is an
artefact of the truncated CC treatment and disappears in full (untruncated)
CC. As will be seen in Section 11.9, the anti-Hermitian components gener-
ate imaginary contributions to the CC energy derivatives used in property
calculations. These contributions are mathematically correct components
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1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32

33 34 35 36 37 38 39

40 41 42 43 44

45 46 47 48 49

50 51 52 53 54

55 56 57 58 59

60 61 62 63 64 65 66

Fig. 11.12. Diagrams for the pppp (1–4), ppph (5–18), phpp (19, 20), pphh (21–59),
hpph (60–65) and hhpp (66) elements of the two-body response density matrix for
CCSDT.
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of the derivatives of the CC energy, consistent with the Q̂HP̂ energy ex-
pression, but they are clearly unphysical and are usually ignored. Because
the response density matrix in CC property calculations appears only in dot
products with sets of symmetric property integrals, lack of Hermiticity is
not a problem. When the orbitals and matrices are real, as is the case in al-
most all calculations, the contributions from the anti-Hermitian components
cancel.

The response density matrices can be defined for any system that offers an
energy expression, even if there is no corresponding wave function. The need
to solve the auxiliary Λ amplitude equations is the price paid for the failure
of CC methods to produce a variational or stationary energy, but use of the
CC energy functional redresses this defect. The calculation of properties in
CI does not require knowledge of the λ-derivative of the CI coefficients, much
less the solution of auxiliary equations. But for this small inconvenience in
the CC methods we gain extensivity and the ability to generalize to any
model that provides a well-defined energy expression. These advantages are
shared by all MBPT approximations and by CC models such as CCSD(T)
and are another reason why CC theory is the most frequently used high-level
method in quantum chemistry today.

11.8 The perturbed reference function

When we are dealing with properties expressed in terms of expectation val-
ues of one-electron or two-electron operators, the above treatment, involving
the solution of the Λ equations and evaluation of the corresponding response
density matrices, is sufficient for the determination of the correlation contri-
bution to the property values through (11.27) or (11.33). However, when the
property also involves variation in the orbitals, additional factors accounting
for orbital relaxation must be considered.

Within a given basis set, the electronic structure problem is fully specified
by the set of one-electron and two-electron integrals over the basis functions
(plus the internuclear-repulsion terms). On the one hand, in a full-CI cal-
culation these integrals fully determine the results, regardless of how the
basis functions are transformed into orbitals, since the wave function and
energy are invariant under any linear transformation of the orbitals. On the
other hand, in any truncated correlation treatment, such as truncated CI,
finite-order perturbation theory or CC for any truncation of T̂ , the results
are not invariant under arbitrary transformations of the orbitals, because
these treatments depend critically on the choice of reference function (or
reference space in the case of multireference treatments) and this function
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depends, in turn, on the choice of the orbitals. The inclusion of T̂1 in a CC
treatment reduces this dependence, because this operator has the effect of
transforming the orbitals, but it does not eliminate it. In all these cases the
results are fully determined by the one-electron and two-electron integrals
over the orbitals and by the truncation scheme.

The dependence on the orbital integrals is obvious from the form of the
second-quantized Hamiltonian. The creation and annihilation operators that
appear in this Hamiltonian affect only the occupation numbers of the orbitals
in the functions on which they operate. The orbitals must change smoothly
under the effects of a perturbation, but their occupation numbers cannot
be allowed to change if the wave function and energy are to vary smoothly.
Therefore, while the creation and annihilation operators will create and
annihilate the modified orbitals, the operators themselves remain formally
unchanged and may be considered invariant under the perturbation as long
as the orbital occupations do not change.

The orbitals, and thus the reference function, are usually chosen to satisfy
some equation or condition that serves to provide a satisfactory
zero-order function and, presumably, satisfactory convergence of the correla-
tion treatment. Most commonly, this equation is the Hartree–Fock equation
in any of its forms. For the consistency of the treatment for different values
of the perturbation strength, and thus for obtaining meaningful values of
the derivatives, we cannot ignore the impact of the perturbation on this
equation or condition and its resulting effect on the reference function and
orbitals. The resulting orbital relaxation leads to a perturbation of the re-
sponse density matrix γ, to produce a relaxed density matrix as will be
shown in Section 11.9.

In the present section we shall confine our analysis to the case in which
the Hartree–Fock equation is used to determine the reference function. As
throughout most of this book, the treatment will be in terms of the spin-
orbitals, so that the relevant equation is the UHF equation. The com-
mon case of closed-shell restricted HF is easily accommodated by the spin-
summation techniques described in Section 7.3. Other orbital choices can be
treated by analogous methods, once we know the dependence of the orbitals
on the perturbation. It will also be assumed here that the unperturbed HF
function is in canonical form.

Under the effect of a one-electron perturbation, the usual UHF Fock
operator

f̂ = ĥ + Ĵ − K̂ , (11.95)
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with coulomb and exchange operators

Ĵ =
∑

i

Ĵi , K̂ =
∑

i

K̂i (11.96)

(Section 1.3), is modified not only by changes in the one-electron operator
ĥ but also by changes induced in the Coulomb and exchange operators Ĵ

and K̂ by changes in the orbitals in terms of which they are defined. The
perturbed Fock operator can be expanded in a strength parameter λ as

f̂(λ) = f̂(0) + λ
dĥ

dλ

∣∣∣∣
λ=0

+ λ
d(̂J − K)

dλ

∣∣∣∣
λ=0

+
1
2
λ2 d2ĥ

dλ2

∣∣∣∣
λ=0

− 1
2
λ2 d2(̂J − K)

dλ2

∣∣∣∣
λ=0

+ · · ·

= f̂ (0) + λ(ĥλ + Ĵλ − K̂λ) + · · · = f̂ (0) + λf̂λ + · · · (11.97)

where

f̂λ = ĥλ + Ĵλ − K̂λ . (11.98)

In the common case in which the perturbation consists just of a one-electron
operator λÔ = λ

∑
pq〈p|ô|q〉{p̂†q̂} we simply have ĥλ = ô, without any

higher-order terms in ĥ.
The basis functions used in the calculation may also be functions of λ.

This dependence is absolutely essential when the property of interest is
the analytical gradient, since atomic-orbital basis functions move with the
atoms. In some other cases the basis functions can be made functions of
an electric field (Pluta, Sadlej and Bartlett 1988) or magnetic field (Lon-
don 1937, Ditchfield 1974, Gauss 1993). In the electric field case such a
dependence is not common, but for a magnetic field the gauge dependence
makes it a necessity. Of course, in a complete basis set or one that does
not follow the atoms, such as a plane-wave basis, such variations should not
arise.

The orbitals {φp(λ)} are expressed in terms of the basis functions {χν(λ)}
by means of a transformation matrix C(λ):

φp(λ) =
∑

ν

χν(λ)Cνp(λ) . (11.99)

The elements Cνp are known as the MO (molecular orbital) coefficients.
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Without assuming that the perturbed HF orbitals are canonical, the HF
equations can be written in the form

f̂(λ)φp(λ) =
∑

q

φq(λ)εqp(λ) (for all p) , 〈φp(λ)|φq(λ)〉 = δpq ,

(11.100)
with

εia(λ) = εai(λ) = 0 (for all i, a). (11.101)

Expanding φp(λ) according to (11.99) and operating from the left with
〈χµ(λ)|, we obtain the usual form of the HF equations in terms of the per-
turbed basis functions,

F(λ)C(λ) = S(λ)C(λ)ε(λ) , C†(λ)S(λ)C(λ) = 1 , (11.102)

where Fµν(λ) = 〈µ(λ)|f̂(λ)|ν(λ)〉, Sµν(λ) = 〈µ(λ)|ν(λ)〉 and ε(λ) is the
block-diagonal matrix of Lagrange multipliers εqp(λ) satisfying (11.101).

We shall assume that the unperturbed HF function is canonical, so that
the unperturbed equation is

f̂ (0)φ(0)
p = φ(0)

p ε(0)
p (for all p) , (11.103)

or, in the unperturbed basis-function representation,

F(0)C(0) = S(0)C(0)ε(0) (11.104)

where ε(0) is the diagonal matrix of eigenvalues (orbital energies) {ε(0)
p }.

We now expand the perturbed MO coefficients in terms of the unperturbed
coefficients by means of a transformation matrix U(λ),

Cµp(λ) =
∑

q

C(0)
µq Uqp(λ) , or C(λ) = C(0)U(λ) . (11.105)

Applying the transformation (11.105) to the perturbed HF equation (11.102)
and multiplying on the left by C(0)†, we obtain

F(λ)U(λ) = S(λ)U(λ)ε(λ) , U†(λ)S(λ)U(λ) = 1 , (11.106)

where

F(λ) = C(0)†F(λ)C(0) , S(λ) = C(0)†S(λ)C(0) . (11.107)

All matrices, orbitals and operators are expanded in powers of λ. For the
zero-order matrices we have

F (0) = ε(0) , S(0) = 1 , U(0) = 1 . (11.108)
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The first-order perturbed HF equation is obtained from (11.106) as

Fλ + ε(0)Uλ = Sλε(0) + Uλε(0) + ελ (11.109)

or [
Uλ, ε(0)

]
= Fλ − Sλε(0) − ελ , (11.110)

which corresponds to

(ε(0)
q − ε(0)

p )Uλ
pq = Fλ

pq − Sλ
pqε

(0)
q − ελ

pq . (11.111)

For p = q the left-hand side of (11.111) vanishes, providing an equation for
the diagonal elements of ελ,

ελ
pp = Fλ

pp − Sλ
ppε

(0)
p . (11.112)

For the particle–hole block of Uλ, for which ελ
ai = 0, (11.111) becomes

(ε(0)
i − ε(0)

a )Uλ
ai = Fλ

ai − Sλ
aiε

(0)
i . (11.113)

The equation for the hole–particle elements Uλ
ia is obtained by interchanging

a and i in (11.113). For the hole–hole and particle–particle blocks of Uλ we
note that the off-diagonal Lagrange multipliers ελ

pq ({p, q} = {i, j} or {a, b})
are at our disposal since they reflect separate unitary transformations among
the perturbed hole orbitals and among the perturbed particle orbitals. Thus
we choose a generalization of (11.112) in the form

ελ
pq = Fλ

pq − 1
2(ε(0)

p + ε(0)
q )Sλ

pq ({p, q} = {i, j} or {a, b}) , (11.114)

which satisfies the Hermiticity condition ελ† = ελ. Substituting this choice
into (11.111), we obtain

(ε(0)
q − ε(0)

p )Uλ
pq = 1

2(ε(0)
p − ε(0)

q )Sλ
pq

or

Uλ
pq = −1

2S
λ
pq ({p, q} = {i, j} or {a, b}) . (11.115)

The diagonal elements Uλ
pp are not determined by (11.111) but can be ob-

tained from the orthonormality condition in (11.106), which takes the first-
order form

Uλ† + Sλ + Uλ = 0 . (11.116)

Because Fλ and Sλ are Hermitian, this condition is clearly satisfied by
(11.113) and (11.115), so that the latter may also be used to determine the
diagonal elements Uλ

pp.
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Equations (11.111)–(11.115) provide expressions for all elements of Uλ

and ελ, but equations (11.113) for the particle–hole block of Uλ are not
explicit because they are coupled by the dependence of Fλ on Uλ through
the derivatives of the Coulomb and exchange integrals, (11.98). The equa-
tions (11.111) are known as the coupled-perturbed Hartree–Fock (CPHF)
equations (Stevens, Pitzer and Lipscomb 1963, Gerratt and Mills 1968), and
their solution will be derived in the following analysis.

The first-order perturbed orbitals are obtained from (11.99) and (11.105)
as

φλ
p =

∑
ν

(
χ(0)

ν Cλ
νp + χλ

νC(0)
νp

)
=

∑
q

φ(0)
q Uλ

qp + φ[λ]
p , (11.117)

where

φ[λ]
p =

∑
ν

χλ
νC(0)

νp . (11.118)

For perturbations which do not involve changes in the basis functions the
φ

[λ]
p part of (11.117) vanishes, and we need only consider the changes Uλ

qp

in the orbital coefficients. For such perturbations, S(λ) = S(0), S(λ) =
1 and Sλ = 0, resulting in the simplification of most of the preceding
equations. Also, in such cases Uλ is skew-Hermitian, i.e. Uλ

ia = −Uλ∗
ai , and

Uλ
ij = Uλ

ab = 0.
The matrix elements Sλ

ai and Fλ
ai, needed for the solution of the CPHF

equations (11.113), are obtained as follows, where we set |a〉 = |φa〉, |µ〉 =
|χµ〉 etc. and all (0) superscripts are omitted to simplify the notation:

Sλ
ai =

∑
µν

C∗
µa〈µ|ν〉λCνi = 〈a[λ]|i〉 + 〈a|i[λ]〉 = 〈a|i〉[λ] , (11.119)

Fλ
ai =

∑
µν

C∗
µa〈µ(λ)|f̂(λ)|ν(λ)〉λCνi

= 〈a|f̂λ|i〉 + 〈a[λ]|f̂ |i〉 + 〈a|f̂ |i[λ]〉
= 〈a|ĥλ|i〉 + 〈a|Ĵλ − K̂λ|i〉 + 〈a[λ]|Ĵ − K̂|i〉 + 〈a|Ĵ − K̂|i[λ]〉
= 〈a|ĥλ|i〉 +

∑
j

(
〈ajλ‖ij〉 + 〈aj‖ijλ〉 + 〈a[λ]j‖ij〉 + 〈aj‖i[λ]j〉

)
= 〈a|ĥλ|i〉 +

∑
jp

(
Uλ∗

pj 〈ap‖ij〉 + 〈aj‖ip〉Uλ
pj

)
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+
∑

j

(
〈aj[λ]‖ij〉 + 〈aj‖ij[λ]〉 + 〈a[λ]j‖ij〉 + 〈aj‖i[λ]j〉

)
= 〈a|ĥλ|i〉 +

∑
jb

(
Uλ∗

bj 〈ab‖ij〉 + 〈aj‖ib〉Uλ
bj

)
+

∑
jk

(
Uλ∗

kj 〈ak‖ij〉 + 〈aj‖ik〉Uλ
kj

)
+

∑
j

〈aj‖ij〉[λ] . (11.120)

Since j and k are dummy summation indices in the first sum in the last line
and may be interchanged, this sum may be written as∑

jk

(
Uλ∗

jk + Uλ
kj

)
〈aj‖ik〉 = −

∑
jk

Sλ
kj〈aj‖ik〉 = −

∑
jk

〈aj‖ik〉〈k|j〉[λ] ,

using the orthogonality condition (11.116). Equation (11.120) then takes
the form

Fλ
ai = 〈a|ĥλ|i〉 +

∑
jb

(
Uλ∗

bj 〈ab‖ij〉 + 〈aj‖ib〉Uλ
bj

)
−

∑
jk

〈aj‖ik〉〈k|j〉[λ] +
∑

j

〈aj‖ij〉[λ] . (11.121)

The CPHF equations (11.113) can now be written as

(εi − εa)Uλ
ai =Fλ

ai − Sλ
aiεi

=〈a|ĥλ|i〉 +
∑
jb

(
Uλ∗

bj 〈ab‖ij〉 + 〈aj‖ib〉Uλ
bj

)
−

∑
jk

〈aj‖ik〉〈k|j〉[λ] +
∑

j

〈aj‖ij〉[λ] − 〈a|i〉[λ]εi . (11.122)

The three terms in the last line of (11.122) are independent of the particle–
hole block of Uλ and vanish if the perturbation is not accompanied by a
change in the basis functions. In other cases they can be computed from the
basis-set derivative integrals; however, straightforward computation of the
second term would require a four-index transformation of the basis-function
derivative integrals to orbital derivative integrals, a relatively lengthy pro-
cess that would have to be repeated for each perturbation. This transforma-
tion can be avoided by use of the reference-function density matrix in the
basis-function representation,

Pνµ =
∑

j

C∗
µjCνj , (11.123)
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or in matrix form

P = CrefC
†
ref , (11.124)

where it is understood that the matrix Cref contains only those columns
of C, (11.105), that correspond to the occupied (hole) orbitals. Using this
density matrix (at zero order), the relevant term of (11.122) can be written
as ∑

j

〈aj‖ij〉[λ] =
∑
µν

C∗
µaCνi

∑
στ

〈µσ‖ντ〉λ
∑

j

C∗
σjCτj

=
∑
µν

C∗
µaCνi

∑
στ

〈µσ‖ντ〉λPτσ

=
∑
µν

C∗
µaCνiY

λ
µν , (11.125)

where

Y λ
µν =

∑
στ

〈µσ‖ντ〉λPτσ (11.126)

represents a two-index contraction of the two-electron basis-set derivative
integrals with the unperturbed reference-function density matrix.

Defining

Xλ
ai = 〈a|ĥλ|i〉 − 〈a|i〉[λ]εi −

∑
jk

〈aj‖ik〉〈k|j〉[λ] +
∑
µν

C∗
µaCνiY

λ
µν (11.127)

and collecting the Uλ-dependent terms on the left-hand side of the CPHF
equation (11.113), we obtain

(εi − εa)Uλ
ai −

∑
jb

(
Uλ∗

bj 〈ab‖ij〉 + 〈aj‖ib〉Uλ
bj

)
= Xλ

ai . (11.128)

If the perturbation is not accompanied by a change in the basis functions
then (11.127) simplifies to

Xλ
ai = 〈a|ĥλ|i〉 . (11.129)

We next introduce the A and B matrices,

Aai,bj ≡ 〈Φa
i |Ĥ|Φb

j〉 = (εa − εi)δijδab − 〈aj‖bi〉 ,

Bai,bj ≡ 〈Φab
ij |Ĥ|0〉 = 〈ab‖ij〉 ,

(11.130)
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in which ai and bj are each treated as a single composite index. The CPHF
equations (11.111) can then be rewritten as

∑
bj

(Aai,bjU
λ
bj + Bai,bjU

λ∗
bj ) = −Xλ

ai (11.131)

or

AUλ + BUλ∗ = −Xλ . (11.132)

When A, B and Xλ are real this equation simplifies to

(A + B)Uλ = −Xλ , (11.133)

which is the equation used in most applications.
In the complex case, (11.132) can be transformed into a set of coupled

equations for the real and imaginary parts of Uλ,

(
AR + BR −AI + BI

AI + BI AR − BR

) (
Uλ

R

Uλ
I

)
= −

(
Xλ

R

Xλ
I

)
, (11.134)

where the subscripts R and I indicate the real and imaginary parts, respec-
tively, of the corresponding matrix or vector, with A = AR + iAI etc. The
coefficients Uλ

ia describing the changes in the virtual orbitals are related to
the coefficients Uλ

ai by the orthogonality relationship (11.116).
Actual evaluation of the Uλ

ai coefficients would require a separate solu-
tion of the CPHF equations for each perturbation, but this multiple solving
can be avoided by use of the interchange theorem, as shown in detail in
Section 11.9 below.

Before proceeding to discuss the correlation-energy derivatives in Sec-
tion 11.9, we shall consider the derivatives of the reference energy. Practical
procedures for evaluating these derivatives were first developed, primarily
for the calculation of SCF energy gradients and force constants, by Gerratt
and Mills (1968) and by Pulay (1969).

Leaving out the nuclear repulsion term, the derivative of which is easily
calculated, and using (3.115), we write the perturbed reference energy in
the form

Eref(λ) =
∑

i

〈i(λ)|ĥ(λ)|i(λ)〉 + 1
2

∑
ij

〈i(λ)j(λ)‖i(λ)j(λ)〉 . (11.135)



394 Calculation of properties in coupled-cluster theory

The derivative of this expression is given by

Eλ
ref =

∑
i

(
〈iλ|ĥ|i〉 + 〈i|ĥλ|i〉 + 〈i|ĥ|iλ〉

)
+ 1

2

∑
ij

(
〈iλj‖ij〉 + 〈ijλ‖ij〉 + 〈ij‖iλj〉 + 〈ij‖ijλ〉

)
=

∑
i

(
〈iλ|ĥ|i〉 + 〈i|ĥλ|i〉 + 〈i|ĥ|iλ〉

)
+

∑
ij

(
〈iλj‖ij〉 + 〈ij‖iλj〉

)

=
∑

i

[
〈i|ĥλ|i〉 +

〈
iλ

∣∣∣ĥ +
∑

j

(
Ĵj − K̂j

)∣∣∣i〉 +
〈
i
∣∣∣ĥ +

∑
j

(
Ĵj − K̂j

)∣∣∣iλ〉]

=
∑

i

(
〈i|ĥλ|i〉 + 〈iλ|f̂ |i〉 + 〈i|f̂ |iλ〉

)
, (11.136)

where the Coulomb and exchange operators Ĵ and K̂ are given by (11.96).
Even though we are assuming that the reference function is canonical, it
would be incorrect at this point to replace f̂ |i〉 by εi|i〉 in the last form
of (11.136), because the unperturbed HF equation is not valid in the space
spanned by the perturbed orbitals. Instead, we expand the orbital derivatives
in terms of the basis functions and their derivatives, (11.117), and obtain

Eλ
ref =

∑
i

〈i|ĥλ|i〉 +
∑

i

(
〈i[λ]|f̂ |i〉 + 〈i|f̂ |i[λ]〉

)

+
∑

i

[∑
p

(
Uλ∗

pi 〈p|i〉 + 〈i|p〉Uλ
pi

)]
εi

=
∑

i

〈i|ĥλ|i〉 +
∑

i

(
〈i[λ]|f̂ |i〉 + 〈i|f̂ |i[λ]〉

)
+

∑
i

(
Uλ∗

ii + Uλ
ii

)
εi .

(11.137)

Using (11.115) this becomes

Eλ
ref =

∑
i

〈i|ĥλ|i〉 +
∑

i

(
〈i[λ]|f̂ |i〉 + 〈i|f̂ |i[λ]〉

)
−

∑
i

Sλ∗
ii εi . (11.138)

where the transformed overlap matrix S(λ) is given by (11.107) and its
derivatives are computed from the derivatives of the basis-set orbital
integrals.

The first sum in this expression is referred to as the Hellmann–Feynman
term. The last sum can be expressed in terms of an energy-weighted density
matrix Π:∑

i

Sλ∗
ii εi =

∑
µν

(∑
i

C∗
µiCνiεi

)
〈µ|ν〉λ =

∑
µν

Πνµ〈µ|ν〉λ , (11.139)
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where

Π = CrefεC
†
ref or Πνµ =

∑
i

C∗
µiCνiεi . (11.140)

Expanding f̂ in the middle sum of (11.138) in terms of two-electron inte-
grals, the energy derivative becomes

Eλ
ref =

∑
i

(
〈i|ĥλ|i〉 + 〈i[λ]|ĥ|i〉 + 〈i|ĥ|i[λ]〉

)
+

∑
ij

(
〈i[λ]j‖ij〉 + 〈ij‖i[λ]j〉

)
−

∑
µν

Πνµ〈µ|ν〉λ

=
∑

i

〈i|ĥ|i〉[λ] + 1
2

∑
ij

〈ij‖ij〉[λ] −
∑
µν

Πνµ〈µ|ν〉λ . (11.141)

In order to avoid a full transformation of the derivative two-electron inte-
grals, Eλ

ref is usually calculated directly from the basis-set derivative integrals
and the reference-function density matrix P:

Eλ
ref =

∑
µν

(
Pνµ〈µ|ĥ|ν〉λ − Πνµ〈µ|ν〉λ) + 1

2

∑
µνστ

PνµPτσ〈µσ‖ντ〉λ . (11.142)

This derivation assumes that the reference function has been variationally
optimized, as is the case for SCF wave functions. In this case it may be
seen from (11.142) that the solution of the CPHF equations is not needed
for the determination of the reference-energy derivative. Furthermore, for
perturbations that do not require changes in the basis functions, only the
Hellmann–Feynman term, the first term in (11.138), survives. However, in
more general cases in which the orbitals are not variationally optimized for
the state in question (such as for quasi-HF, in which the orbitals are obtained
from an SCF optimization for a different electronic state), there is an added
term involving the derivative of the reference-function density matrix with
respect to the perturbation,

dEref

dλ
=

∂Eref

∂λ
+

∂Eref

∂P
dP
dλ

. (11.143)

The second term vanishes in the SCF case because the orbitals have been
variationally optimized. In other cases we have an additional contribution
to the reference-energy derivative,

∆PEλ
ref =

∑
µν

〈µ|ĥ|ν〉P λ
νµ + 1

2

∑
µνστ

〈µσ‖ντ〉
(
P λ

νµPτσ + PνµP λ
τσ

)
. (11.144)



396 Calculation of properties in coupled-cluster theory

Evaluation of the density-matrix derivatives requires the knowledge of Uλ,
as seen from (11.105), and thus requires the solution of the CPHF equations,
but the interchange-theorem technique to be described in the next section
can be used to avoid explicit evaluation of Uλ for each perturbation (Gauss,
Stanton and Bartlett 1991).

11.9 The CC correlation-energy derivative

The coupled-cluster correlation-energy derivative, see (11.68), can be written
in the form

∆Eλ = 〈0|(1 + Λ)e−T̂ Ĥλ
NeT̂ |0〉

= 〈0|(1 + Λ)e−T̂
(∑

pq

fλ
pq{p̂†q̂} + 1

4

∑
pqrs

〈pq‖rs〉λ{p̂†q̂†ŝr̂}
)
eT̂ |0〉 .

(11.145)

Substituting the response density matrices (11.88), (11.89) into (11.145), we
obtain

∆Eλ =
∑
pq

fλ
pq(γN)qp + 1

4

∑
pqrs

〈pq‖rs〉λ(ΓN)rspq = ∆Eλ
1 + ∆Eλ

2 , (11.146)

where

∆Eλ
1 =

∑
pq

fλ
pqγqp =

∑
pq

(
〈p|f̂λ|q〉 + 〈pλ|f̂ |q〉 + 〈p|f̂ |qλ〉

)
γqp

=
∑
pq

[
〈p|ĥλ|q〉 +

∑
k

(
〈pkλ‖qk〉 + 〈pk‖qkλ〉 + 〈pλi‖qk〉 + 〈pk‖qλk〉

)]
γqp

=
∑
pq

[
〈p|ĥλ|q〉 +

∑
k

〈pk‖qk〉λ
]
γqp , (11.147)

∆Eλ
2 = 1

4

∑
pqrs

〈pq‖rs〉λΓrspq . (11.148)

Here and in the rest of the chapter we omit the subscript N from the normal-
ordered density matrices to simplify the notation.

The two-electron derivative integrals in (11.147), (11.148) can be sepa-
rated into contributions from the two terms in the expression for the first-
order perturbed orbitals {φλ

p}, (11.117). Considering the two-electron inte-
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gral in (11.147) first, we have

∑
k

〈pk‖qk〉λ =
∑
kr

(
〈rk‖qk〉Uλ∗

rp + 〈pk‖rk〉Uλ
rq + 〈pr‖qk〉Uλ∗

rk + 〈pk‖qr〉Uλ
rk

)

+
∑

k

〈pk‖qk〉[λ]

=
∑

r

(
frqU

λ∗
rp + fprU

λ
rq

)
+

∑
kr

(
〈pr‖qk〉Uλ∗

rk + 〈pk‖qr〉Uλ
rk

)
+

∑
k

〈pk‖qk〉[λ] . (11.149)

Taking the second term in the first sum on the r.h.s of (11.149) as an ex-
ample, and separating it into contributions from the different blocks of Uλ,
we obtain∑
pqr

fprU
λ
rqγqp =

∑
pia

fpaU
λ
aiγip +

∑
pai

fpiU
λ
iaγap +

∑
pab

fpbU
λ
baγap +

∑
pij

fpjU
λ
jiγip.

(11.150)

We next use (11.115), (11.116) to eliminate all but the particle–hole block
of Uλ:∑

pqr

fprU
λ
rqγqp =

∑
pia

fpaU
λ
aiγip −

∑
pai

fpiU
λ∗
ai γap −

∑
pai

fpiSλ
iaγap

− 1
2

∑
pab

fpbSλ
baγap − 1

2

∑
pij

fpjSλ
jiγip

=
∑
pia

(
fpaγipU

λ
ai − fpiγapU

λ∗
ai

)
−

∑
pai

fpi〈i|a〉[λ]γap

− 1
2

∑
pab

fpb〈b|a〉[λ]γap − 1
2

∑
pij

fpj〈j|i〉[λ]γip . (11.151)

Similar treatment for the first term in the first sum on the r.h.s of (11.149)
produces∑

pqr

frqU
λ∗
rp γqp =

∑
qpr

frpU
λ∗
rq γpq

=
∑
ipa

(
fapγpiU

λ∗
ai − fipγpaU

λ
ai

)
−

∑
pai

fip〈a|i〉[λ]γpa

− 1
2

∑
pab

fbp〈a|b〉[λ]γpa − 1
2

∑
pij

fjp〈i|j〉[λ]γpi . (11.152)



398 Calculation of properties in coupled-cluster theory

The terms in the second sum of (11.149) result in∑
pqrk

〈pk‖qr〉Uλ
rkγqp =

∑
qpri

〈pi‖qr〉Uλ
riγqp

=
∑
pqai

〈pi‖qa〉γqpU
λ
ai − 1

2

∑
pqji

〈pi‖qj〉〈j|i〉[λ]γqp , (11.153)

∑
pqrk

〈pr‖qk〉Uλ∗
rk γqp =

∑
pqri

〈qr‖pi〉Uλ∗
ri γpq

=
∑
pqai

〈qa‖pi〉γpqU
λ∗
ai − 1

2

∑
pqji

〈qj‖pi〉〈i|j〉[λ]γpq . (11.154)

Denoting the sum of the contributions to ∆Eλ
1 , (11.147), that depend on

the particle–hole block of Uλ by ∆EU
1 , we collect all such terms in (11.151)–

(11.154) and obtain

∆EU
1 =

∑
ia

{[∑
p

(fpaγip − fipγpa) +
∑
pq

〈pi‖qa〉γqp

]
Uλ

ai

+
[∑

p

(fapγpi − fpiγap) +
∑
pq

〈qa‖pi〉γpq

]
Uλ∗

ai

}
. (11.155)

Equation (11.147) can now be written as

∆Eλ
1 =

∑
pq

〈p|ĥλ|q〉γqp + ∆EU
1 + ∆E

[λ]
1 , (11.156)

where

∆E
[λ]
1 = −

∑
ia

[(∑
p

fpiγap

)
〈i|a〉[λ] +

(∑
p

fipγpa

)
〈a|i〉[λ]

]

− 1
2

∑
ab

[∑
p

(
fpaγbp + fbpγpa

)
〈a|b〉[λ]

]

−
∑
ij

[
1
2

∑
p

(
fpiγjp + fjpγpi

)
+

∑
pq

〈pj‖qi〉γqp

]
〈i|j〉[λ]

+
∑
pq

(∑
i

〈pi‖qi〉[λ]

)
γqp . (11.157)

The sums involving 〈b|a〉[λ] and 〈j|i〉[λ] were combined with those involving
〈a|b〉[λ] and 〈i|j〉[λ], respectively, by the interchange of dummy summation
indices, including the interchange of p and q in (11.154). Both ∆EU

1 and
∆E

[λ]
1 are simplified for canonical HF orbitals by the relation fpq = εpδpq.
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A similar treatment of the two-electron contribution to ∆Eλ results in

∆Eλ
2 = ∆EU

2 + ∆E
[λ]
2 , (11.158)

∆EU
2 = 1

2

∑
ai

[(∑
pqr

〈pq‖ra〉Γripq − 〈ri‖pq〉Γpqra

)
Uλ

ai

+
(∑

pqr

〈ra‖pq〉Γpqri − 〈pq‖ri〉Γrapq

)
Uλ∗

ai

]
, (11.159)

∆E
[λ]
2 = −1

2

∑
as

[(∑
pqr

〈pq‖rs〉Γrapq

)
〈s|a〉[λ] +

(∑
pqr

〈rs‖pq〉Γpqra

)
〈a|s〉[λ]

]

− 1
2

∑
pqrij

(
〈rj‖pq〉Γpqri + 〈pq‖ri〉Γrjpq

)
〈i|j〉[λ] +

∑
pqrs

〈pq‖rs〉[λ]Γrspq .

(11.160)

For perturbations that are not accompanied by a change in the basis func-
tions we have ∆E[λ] = 0, and then the entire first-order perturbed energy is
given by ∆Eλ =

∑
pq〈p|ĥλ|q〉 + ∆EU

1 + ∆EU
2 .

A common feature of almost all terms in the expansion of the first-order
energy is that if we ignore the non-Hermiticity of the response density matri-
ces then they come in complex-conjugate pairs. It is convenient to split the
response density matrices into Hermitian and anti-Hermitian components:

γpq = γH
pq + γA

pq = γH∗
qp − γA∗

qp ,

Γpqrs = ΓH
pqrs + ΓA

pqrs = ΓH∗
rspq − ΓA∗

rspq ,
(11.161)

where

γH
pq = 1

2(γpq + γ∗
qp) , ΓH

pqrs = 1
2(Γpqrs + Γ∗

rspq) , (11.162)

γA
pq = 1

2(γpq − γ∗
qp) , ΓA

pqrs = 1
2(Γpqrs − Γ∗

rspq) . (11.163)

Defining the perturbation-independent vectors M and N, with components

Mai =
∑

p

(
fpaγ

H
ip − fipγ

H
pa +

∑
q

〈pi‖qa〉γH
qp

)

+
∑
pqr

(
〈pq‖ra〉ΓH

ripq − 〈ri‖pq〉ΓH
pqra

)
,

(11.164)
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Nai =
∑

p

(
fpaγ

A
ip − fipγ

A
pa +

∑
q

〈pi‖qa〉γA
qp

)

+
∑
pqr

(
〈pq‖ra〉ΓA

ripq − 〈ri‖pq〉ΓA
pqra

) (11.165)

(with ai treated as a single composite index), we can write the Uλ-dependent
part of the first-order energy as

∆EU = ∆EU
1 + ∆EU

2

=
∑
ai

[
(Mai + Nai)Uλ

ai + (Mai − Nai)∗Uλ∗
ai

]
= (M + N)TUλ + (M − N)†Uλ∗

= 2(MT
RUλ

R − MT
I Uλ

I ) + 2i(NT
RUλ

I + NT
I Uλ

R) ,

(11.166)

where the superscript T indicates the transpose and subscripts R and I
indicate the real and imaginary parts of the respective vectors; M = MR +
iMI etc. When all quantities are real, this result simplifies to

∆EU = 2
∑
ai

MaiU
λ
ai = 2MTUλ , (11.167)

and the vector N and the anti-Hermitian components of the response density
matrices are not needed for the calculation of ∆EU .

As stated in Section 11.8, the explicit calculation of Uλ, which would
require repeated solution of the CPHF equations for different perturbations,
can be avoided by use of the interchange theorem (Sternheimer and Foley
1953, Dalgarno and Stewart 1958, Hirschfelder, Byers-Brown and Epstein
1964, Handy and Schaefer 1984); this is sometimes referred to in the CPHF
context as the Z-vector method. (A more general use of the interchange
theorem for the correlation problem is represented by the introduction of
the Λ equations in Section 11.5; see Adamowicz, Laidig and Bartlett (1984)
and Salter, Trucks and Bartlett (1989)). Considering first the case in which
all quantities are real, the quantity needed for the evaluation of ∆EU is
the contraction 2MTUλ, (11.167). To obtain this result, instead of solving
(11.133) for each perturbation we solve a single perturbation-independent
equation,

(A + B)TZ = 2M . (11.168)

Then the contractions of the solution vector Z with the right-hand-side
vectors −Xλ for the various perturbations,

−ZTXλ = −2MT(A + B)−1Xλ = 2MTUλ , (11.169)
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provide the required answers.
As given in (11.129), when the perturbation does not involve changes in

the basis functions we have Xai = 〈a|Ĥλ|i〉 = hλ
ai. For this case ∆Eλ is

given completely by ∆EU , and when all quantities are real we have

∆EU = 2MTUλ = −2MT(A − B)−1hλ , (11.170)

where hλ is treated as a vector with components identified by the composite
index ai. This form can be used to define a relaxed density matrix D that
incorporates the effects of orbital relaxation, for which

Dia = −2
∑
bj

[∑
p

(
fpbγjp − fjpγpb

)
+

∑
pq

〈pj‖qb〉γqp

+
∑
pqr

(
〈pq‖rb〉Γrjpq − 〈rj‖pq〉Γpqrb

)][
(A − B)−1

]
bj,ai

,

(11.171)

so that

∆EU =
∑
ai

Diah
λ
ai . (11.172)

One-electron properties given by Ĥλ = Ô can then be obtained as

ON =
∑
ai

Diaoai . (11.173)

The relaxed density matrix is perturbation independent and needs to be
computed once only for any number of perturbations. The same techniques
involving the interchange theorem, described in connection with the treat-
ment of the Uλ equations, are used in its calculation to avoid the explicit
inversion of A−B. Generalization of this treatment to the case of complex
functions is straightforward.

As will be discussed in Section 12.8, the truncated-CC unperturbed en-
ergy, computed as P̂HP̂ , may be complex; such a result is not normally
expected, however, at least when real orbitals are used for ground-state
molecules near their equilibrium geometry. In any case, the imaginary com-
ponent of any CC energy-derivative result is unphysical, being an artefact
of the non-Hermiticity of the response density matrices, and it is reasonable
to ignore it. Though the non-Hermitian forms can be used, replacing them
by their Hermitian average is sometimes useful.
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Even if the A and B matrices are real, the right-hand-side vector −Xλ

of the CPHF equations (11.132) may still be complex, leading to complex
Uλ vectors. Such a situation can arise when the HF solution is unsta-
ble with respect to a lower-energy symmetry-broken HF solution (Č́ıžek
and Paldus 1967, Sekino and Bartlett 1986). Another example arises when
gauge-including atomic orbitals (GIAOs, also referred to as gauge invariant
atomic orbitals) are used as basis functions (London 1937, Ditchfield 1974,
Gauss, Ruud and Helgaker 1996) in calculations involving some magnetic
perturbations, such as those due to magnetic susceptibility or nuclear mag-
netic shielding (used in the evaluation of NMR chemical shifts). In such cases
the basis-set-integral derivatives, and thus Xλ and Uλ, are pure imaginary
but these properties are of second order, with zero first-order contributions,
and the second-order (and all even-order) energy derivatives are real (Gauss
1993).

In calculations on atoms, linear molecules and molecules belonging to
degenerate irreducible representations of axial point groups such as Cn, Cnh

and Snh (n > 2), the use of complex orbitals may be useful for spatial
symmetry adaptation and may result in complex A and B matrices. For
the sake of completeness an analysis of the complex case, represented by the
CPHF equations (11.134), including the anti-Hermitian contributions, will
now be given.

As seen in (11.166), in the complex case we need two contractions,

MTUλ + MT∗Uλ∗ = 2(MT
RUλ

R − MT
I Uλ

I ) (11.174)

and

NTUλ − NT∗Uλ∗ = 2i(NT
I Uλ

R + NT
RUλ

I ) . (11.175)

These contributions to the correlation-energy derivative can be obtained by
solving two sets of coupled equations,

(
AR + BR −AI + BI

AI + BI AR − BR

)T (
ZR

ZI

)
=

(
MR

−MI

)
(11.176)

and (
AR + BR −AI + BI

AI + BI AR − BR

)T (
Z′

R

Z′
I

)
=

(
NI

NR

)
. (11.177)
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Then

−2
(
ZT

R ZT
I

) (
Xλ

R

Xλ
I

)
= −2

(
MT

R −MT
I

) (
AR + BR −AI + BI

AI + BI AR − BR

)−1(
Xλ

R

Xλ
I

)

= 2
(
MT

R −MT
I

) (
Uλ

R

Uλ
I

)
(11.178)

and

−2i
(
Z′T

R Z′T
I

) (
Xλ

R

Xλ
I

)
= −2i

(
NT

I NT
R

) (
AR + BR −AI + BI

AI + BI AR − BR

)−1(
Xλ

R

Xλ
I

)

= 2i
(
NT

I NT
R

) (
Uλ

R

Uλ
I

)
(11.179)

provide the required answer.
The anti-Hermitian part of the response density matrices is of at least

third order in MBPT (Section 11.7) and would normally be very small. As
previously stated, its contribution to ∆EU is pure imaginary and, while
mathematically it constitutes a correct part of the derivative of the CC
energy, it is unphysical and therefore is usually ignored: the vector N is not
calculated and the corresponding equations (11.177) are not solved.

It is also instructive to look at the case in which all unperturbed quantities
are real but the perturbed orbitals, and thus the Xλ vector, are complex.
In this case (11.176), (11.177) become(

A + B
)T

ZR = M (11.180)

and (
A − B

)T
Z′

I = N . (11.181)

The contribution to the correlation-energy derivative is then given by

−2
(
ZT

R iZ′T
I

) (
Xλ

R

Xλ
I

)
= −2

(
MT iNT

) (
(A + B)−1Xλ

R

(A − B)−1Xλ
I

)

= 2
(
MT iNT

) (
Uλ

R

Uλ
I

)
.

(11.182)

If Xλ is pure imaginary, as in the case of magnetic perturbations with GIAO
orbitals, we would only have (11.181), and (11.182) then becomes

−2iZ′T
I Xλ

I = −2iNT(A − B)−1Xλ
I = 2iNTUλ

I . (11.183)
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Again, the resulting imaginary energy derivative is unphysical, the correct
result for the first-order energy being zero, and the first true nonzero con-
tribution is of second order. In this case we do not need to solve (11.181),
so that N is not needed, but Uλ, which is pure imaginary, plays a role in
the second-order calculation.

If the basis functions are modified by the perturbation, we have to de-
termine the ∆E[λ] contributions. Collecting the terms from (11.157) and
(11.160), and defining the perturbation-independent contractions

ξpq =
∑

r

fprγrq , ηpq =
∑

r

γprfrq , ζji =
∑
rs

〈rj‖si〉γsr ,

µpq =
∑
rst

〈tp‖rs〉Γrstq , νpq =
∑
rst

Γtprs〈rs‖tq〉 ,
(11.184)

the ∆E[λ] contribution is obtained as

∆E[λ] = −
∑
ai

[
(ξia + 1

2µia)〈a|i〉[λ] + (ηai + 1
2νai)〈i|a〉[λ]

]
− 1

2

∑
ab

(ξba + ηba + µba + νba)〈a|b〉[λ]

− 1
2

∑
ij

(ξji + ηji + µji + νji + 2ζji)〈i|j〉[λ]

+
∑
pq

(∑
i

〈pi‖qi〉[λ]

)
γqp +

∑
pqrs

〈pq‖rs〉[λ]Γrspq . (11.185)

This expression can also be separated into contributions from the Hermitian
and anti-Hermitian parts of the response density matrices. For this purpose
it is useful to note that

ηH = ξH† , νH = µH† , ζH = ζH† ,

ηA = −ξA† , νA = −µA† , ζA = −ζA† .
(11.186)

As in the case of ∆EU , the anti-Hermitian terms will generate imaginary
contributions to ∆E[λ] and would not normally be calculated. When all
quantities are real the anti-Hermitian contributions cancel.

To avoid repeated four-index transformations of two-electron derivative
integrals from basis-function to orbital representations in the last two sums
of (11.185), the corresponding sums are best evaluated in the basis-function
representation, by transforming the response density matrices from the or-
bital representation to the basis-set representation:

γ̃νµ =
∑
pq

C∗
µpCνqγqp , (11.187)
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Γ̃στµν =
∑
pqrs

C∗
µpC

∗
νqCσrCτsΓrspq , (11.188)

where we should remember that, even though the subscript N has been
omitted, the response density matrices γ and Γ are the normal-ordered
matrices γN and ΓN, respectively. Then∑

pqi

〈pi‖qi〉[λ]γqp =
∑
µνστ

〈µσ‖ντ〉λ
(∑

i

C∗
σiCτi

) ∑
pq

C∗
µpCνqγqp

=
∑
µνστ

〈µσ‖ντ〉λDτσγ̃νµ =
∑
µν

Y λ
µν γ̃νµ , (11.189)

where Yλ is given by (11.126) and∑
pqrs

〈pq‖rs〉[λ]Γrspq =
∑
µνστ

〈µν‖στ〉λ
∑
pqrs

C∗
µpC

∗
νqC

∗
σrCτsΓrspq

=
∑
µνστ

〈µν‖στ〉λΓ̃στµν . (11.190)

This approach is particularly important in the calculation of energy gradi-
ents, for which many different perturbations (displacements of the different
atoms, each in up to three directions) need to be considered.

Finally, the total correlation-energy derivative is made up of the different
contributions:

∆Eλ =
∑
pq

〈p|ĥλ|q〉γqp + ∆EU + ∆E[λ]

=
∑
µν

〈µ|ĥλ|ν〉γ̃νµ + ∆EU + ∆E[λ] . (11.191)

The relaxed density matrix (11.171) can be used to compute the ∆EU term
(11.172).

Extensions of the treatment described here can be used to obtain higher-
order properties, including second and higher derivatives. Such methods
for CC higher-order properties involving external fields, using EOM–CC
methodology, are described in Section 13.5.
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Additional aspects of coupled-cluster theory

This chapter addresses several more subtle but nevertheless important as-
pects of coupled-cluster MBPT theory.

12.1 Spin summations and computational considerations

The formalism described in the previous sections was presented in terms of
spinorbitals, without regard to integration over spin coordinates. Even in
the case of unrestricted Hartree–Fock (UHF) reference functions, in which
the spatial orbitals for α and β spin are different, integration over spin is
absolutely necessary to eliminate many integrals and to allow the introduc-
tion of constraints over the summation indices, achieving a computational
effort of no more than three times that of comparable RHF calculations.
Furthermore, all amplitudes in which the number of α and β spinorbitals
is different for the hole and particle indices vanish, preserving the MS , but
not the S, quantum number. In the restricted closed-shell Hartree–Fock
(RHF) case, spin integration is used to combine contributions from α and β

spinorbitals, deriving expressions in terms of spatial orbitals only and thus
reducing the range of all indices by about a factor 2 (see Section 7.3). Re-
stricted open-shell Hartree–Fock (ROHF) calculations are usually performed
as UHF, despite double occupancy, because the most effective algorithms
are still of the spin-integrated, spatial-orbital, form. The double occupancy
cannot be exploited further without special effort.

The incorporation of spin integration can be done algebraically or, in some
cases, diagrammatically. As an example of the diagrammatic treatment of
spin summation in coupled-cluster calculations we shall consider the case
of the CCD equation with an RHF reference function. The diagrammatic
representation of this equation in a spinorbital basis was given in Fig. 9.2
in terms of antisymmetrized Goldstone diagrams. For spin summation we

406
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expand these diagrams in terms of ordinary Goldstone diagrams representing
spatial orbitals (Č́ıžek 1969), as shown in Fig. 12.1 (Bartlett and Musia�l
2007, Fig. 8). The labels in this figure reflect the origin of each diagram
in terms of a diagram of Fig. 9.2; an x in the label indicates exchange.
For example, diagrams D3b − D3bx5 all originate in the antisymmetrized
Goldstone diagram D3b. This correspondence can be verified by the fact that
all six of these diagrams collapse to the same Hugenholtz diagram (labeled
Qb in Section 9.5, just before (9.121)) when each vertex is collapsed to a dot.

The particle and hole lines in the diagrams of Fig. 12.1 represent spa-
tial orbitals, indicated by capital letters I, J, . . . for holes and A, B, . . . for
particles. In the RHF case considered here, each spatial orbital reflects the
existence of two spinorbitals having the same spatial part, e.g. Iα and Iβ.
The interpretation of these diagrams differs in some respects from that of
the antisymmetrized diagrams. The sign rule is the same, but the numer-
ical weight factors and the permutation factors are different. There is a
weight factor 2 for each closed loop (reflecting summation over two spin
assignments) and a weight factor 1

2 for diagrams with left–right symmetry
(i.e. symmetry with respect to reflection in a vertical line), as for MBPT
Goldstone diagrams. For example, diagram D3b has two closed loops and

D1

×

D2a

×

D2b D2c D2d D2e

D2ex1 D2ex2 D2ex3 D3a D3b

D3bx1 D3bx2 D3bx3 D3bx4 D3bx5

D3c D3cx D3d D3dx

Fig. 12.1. Diagrams for the spin-summed CCD amplitude equations for an RHF
reference function.
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left–right symmetry, for a total weight equal to 2×2× 1
2 = 2, while diagram

D3bx3 has one closed loop and symmetry, giving a total weight 1. Special
attention needs to be paid to diagram D3a; while as drawn in Fig. 12.1
this diagram does not show left–right symmetry, it can also be drawn in a
symmetric form,

,

and therefore has weight 1
2 .

For the permutation factor (which does not appear in MBPT diagrams),
we note that the spin-free amplitudes do not have the same antisymmetry
property as in the spinorbital form,

tAB
IJ = tBA

JI �= tBA
IJ = tAB

JI , (12.1)

and so for the tAB
IJ diagram I and A must remain on the same continuous

path and so must J and B. Therefore we may only permute (IA) as a unit
with (JB), using the permutation factor

P̂ ((IA)(JB)) = 1 + PIJPAB . (12.2)

The final form of the algebraic amplitude equations for CCD, with the
terms ordered as in Fig. 12.1, is

〈AB|v̂|IJ〉

+ P̂ ((IA)(JB))
[ ∑

C

fBCtAC
IJ −

∑
K

fKJ tAB
IK

+
1
2

∑
CD

〈AB|v̂|CD〉tCD
IJ +

1
2

∑
KL

〈KL|v̂|IJ〉tAB
KL

+
∑
KC

(
2〈KB|v̂|CJ〉tAC

IK − 〈KB|v̂|CJ〉tAC
KI

− 〈KB|v̂|IC〉tAC
KJ − 〈KB|v̂|JC〉tAC

IK

)
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+
∑

KLCD

〈KL|v̂|CD〉
(

1
2 tCD

IJ tAB
KL + 2tAC

IK tDB
LJ − 2tAC

IK tDB
JL

+ 1
2 tCA

IK tBD
LJ − tAD

IK tCB
LJ + tAD

KI tCB
LJ

+ 1
2 tCB

IL tAD
KJ − 2tCD

KI tAB
LJ + tCD

IK tAB
LJ

− 2tCA
KLtDB

IJ + tAC
KLtDB

IJ

)]

= 0 (for all I ≥ J and all A, B). (12.3)

The summations over internal lines are over spatial orbitals. For diagrams
D2c and D2d the permutation factor can be canceled with the weight factor,
because the permuted form is equal to the original.

Using the same interpretation rules, the CCD correlation energy is given
by

∆ECCD = +

=
∑

IJAB

(
2〈IJ |v̂|AB〉 − 〈IJ |v̂|BA〉

)
tAB
IJ . (12.4)

Careful comparison of the spinorbital CCD equation (9.126) and the spin-
free CCD equation (12.3) for the case in which the reference determinant is
constructed solely from doubly occupied spatial orbitals shows the following
relationships between the corresponding amplitudes:

tAB
IJ = tAαBβ

IαJβ = tAβBα
IβJα = tBA

JI , (12.5)

tAαBα
IαJα = tAβBβ

IβJβ = tAB
IJ − tBA

IJ . (12.6)

The two independent amplitudes tAB
IJ and tBA

IJ serve respectively as coeffi-
cients for two sums of four Slater determinants each,

|ΦAB
IJ 〉 ≡ Âα

†
B̂α

†
ĴαÎα|0〉 + Âα

†
B̂β

†
ĴβÎα|0〉

+ Âβ
†
B̂α

†
ĴαÎβ|0〉 + Âβ

†
B̂β

†
ĴβÎβ|0〉 , (12.7)

|ΦBA
IJ 〉 ≡ B̂α

†
Âα

†
ĴαÎα|0〉 + B̂α

†
Âβ

†
ĴβÎα|0〉

+ B̂β
†
Âα

†
ĴαÎβ|0〉 + B̂β

†
Âβ

†
ĴβÎβ|0〉 , (12.8)

where |0〉 is the reference determinant constructed from doubly occupied
orbitals only. Each of these two linear combinations of Slater determinants
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is a spin eigenfunction with S = 0. However, these two spin eigenfunctions
are not orthogonal, because the first determinant in (12.8) is equal to the
negative of the first determinant in (12.7), and the same is true of the last
determinant in the two equations, resulting in an overlap

〈ΦAB
IJ |ΦBA

IJ 〉 = −2 (12.9)

(note that these functions are not normalized; 〈ΦAB
IJ |ΦAB

IJ 〉 = 〈ΦBA
IJ |ΦBA

IJ 〉 =
4). Any other doubly excited singlet-spin eigenfunction that can be con-
structed involving the same four orbitals would be linearly dependent on
these two functions, which explains the exclusion of amplitudes such as
tAβBα
IαJβ and justifies the requirement that spin be conserved along each con-

tinuous path in the diagrams.
The cases A = B and/or I = J are simpler, resulting in one spin-free am-

plitude each and providing coefficients for the following singlet-spin eigen-
functions:

|ΦAA
IJ 〉 ≡ Âα

†
Âβ

†
ĴβÎα|0〉 + Âβ

†
Âα

†
ĴαÎβ|0〉 , (12.10)

|ΦAB
II 〉 ≡ Âα

†
B̂β

†
ÎβÎα|0〉 + Âβ

†
B̂α

†
ÎαÎβ|0〉 , (12.11)

|ΦAA
II 〉 ≡ Âα

†
Âβ

†
ÎβÎα|0〉 . (12.12)

The situation is more complicated for higher excitations and for open-
shell states. For ROHF cases the approach described here may lead to func-
tions that are not spin eigenfunctions. A fully spin-adapted and orthogonal
coupled-cluster formalism, including the treatment of open-shell systems, is
provided by the orthogonally spin-adapted coupled-cluster method (Paldus
1977, Adams and Paldus 1979, Li and Paldus 1997).

Spin integration in UHF-based CCD calculations is described in terms of
antisymmetrized diagrams by Bartlett and Musia�l (2007, Fig. 9). For more
general CC treatments using different orbitals for different spins, including
open-shell UHF cases, only algebraic procedures are easily applicable; this
is the approach used for all cases in the ACES program system (Stanton,
Gauss, Watts et al. 1992, Bartlett and Watts 1998). This approach readily
permits the treatment of high-spin open-shell molecules with either UHF
or ROHF reference functions as well as the use of even more exotic refer-
ence functions, such as are found in quasi-restricted Hartree–Fock (QRHF)
(Rittby and Bartlett 1988) or the Brueckner orbital representation to be de-
scribed in Section 12.4. Low-spin open-shell states are not accessible in this
way, because they require a multideterminantal zero-order function. These
types of state require more sophisticated spin-adapted theories, such as the
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orthogonally spin-adapted approach mentioned above. Open-shell singlets
can be treated within a spinorbital context by a two-determinant-based CC
theory (Balková and Bartlett 1992, Szalay and Bartlett 1994). Open-shell
states can also be treated by the various EOM–CC techniques discussed in
Chapter 13.

In all cases, careful organization of the calculations, the definition of ap-
propriate intermediate sums and other summation techniques are important
in keeping the computational work within reasonable bounds. Examples of
the use of intermediates in CC calculations were presented by Noga and
Bartlett (1987) for CCSDT and by Kucharski and Bartlett (1991a, 1992)
for CCSDTQ. These techniques are discussed further in Section 10.7.

12.2 Coupled-cluster theory with an arbitrary
single-determinant reference function

The maximum flexibility and range of applicability of the coupled-cluster
method often derives from the use of reference functions that are not canoni-
cal Hartree–Fock determinants. Such reference functions may be noncanon-
ical HF solutions, which require a block-diagonal Fock matrix, fai = 0,
without requiring the individual hole–hole and particle–particle blocks to
be diagonal, as would be the case for e.g. localized HF orbitals, or they can
be more arbitrary non-HF single determinants, for which fai �= 0. Because
the use of a canonical HF reference function, with its computational sim-
plifications, is so pervasive in CC and MBPT applications, generalizations
to arbitrary reference functions often may not be given due consideration.
In the discussions of MBPT and CC methods in this book we have always
tried to include the general case. In this and the next sections we shall also
show that using CC theory with an arbitrary reference function can lead
to a generalized MBPT treatment (GMBPT) that provides the finite-order
perturbation-theory approximations as well as the CC solution.

The normal-ordered Hamiltonian retains the same general form for any
choice of orbitals,

ĤN =
∑
pq

fpq{p̂†q̂} + 1
4

∑
pqrs

〈pq‖rs〉{p̂†q̂†ŝr̂} . (12.13)

In the general case we have to retain the fai elements, which reflect the
non-HF nature of the reference function, as well as the off-diagonal fij and
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fab elements; this leads to the detailed form

ĤN =
∑

p

fpp{p̂†p̂} +
∑
i�=j

fij {̂i†ĵ} +
∑
a �=b

fab{â†b̂}

+
∑
ai

(
fai{â†î} + fia{̂i†â}

)
+

1
4

∑
pqrs

〈pq‖rs〉{p̂†q̂†ŝr̂} . (12.14)

We can separate this form into a zero-order part and a perturbation, in which
the zero-order part includes the off-diagonal elements of the hole–hole and
particle–particle blocks of the Fock matrix:

ĤN = (Ĥ0)N + V̂N , (12.15)

where

(Ĥ0)N =
∑

p

fpp{p̂†p̂} +
∑
i�=j

fij {̂i†ĵ} +
∑
a �=b

fab{â†b̂} , (12.16)

V̂N =
∑
ai

(
fai{â†î} + fia{̂i†â}

)
+ 1

4

∑
pqrs

〈pq‖rs〉{p̂†q̂†ŝr̂} . (12.17)

In earlier descriptions of MBPT procedures and of the iterative solutions
of the CC equations (see Chapters 9 and 10), only the diagonal part (Ĥd

0 )N,
i.e. the first term on the r.h.s. of (12.16), was used as the zero-order
normal-product Hamiltonian; all other terms were treated as part of the
perturbation. While this approach is practical and common, it has three
weaknesses. First, in many-body theory we prefer the results to be invari-
ant under linear transformations of the occupied orbitals or the unoccu-
pied orbitals separately. This requirement is satisfied by the separation in
(12.15)–(12.17) but not by a separation using (Ĥd

0 )N. Second, using (Ĥd
0 )N

increases the likelihood that large off-diagonal Fock-matrix elements will be
included in the perturbation and will contribute to poor convergence of the
iterative process.

Third, a diagram like

× ,

in the CCSDT equations (diagram T2a of Fig. 10.5) can cause computa-
tional difficulties because, unlike the situation in the canonical HF case, the

off-diagonal × interaction does not vanish. For non-HF and noncanon-

ical HF orbitals the evaluation of this diagram would require an ∼n 3
hn 4

p

procedure. In iterative CCSDT-1, CCSDT-3 or CCSDT calculations this
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diagram is simply incorporated in the generalized intermediates without
undue concern, but for a noniterative CCSD(T) calculation its off-diagonal
part cannot be ignored and would become a serious limitation (Watts, Gauss
and Bartlett 1993).

All three weaknesses can be readily removed by exploiting the invariance
of CC theory under separate unitary transformations of the occupied orbitals
and of the unoccupied orbitals. This objective is accomplished by a unitary
transformation of the spinorbitals to semicanonical form, defined by the
requirement that the Fock matrix takes the form

.

For the semicanonical orbitals, the hole–hole and particle–particle blocks of
the Fock matrix are diagonal, fij = fiiδij , fab = faaδab, and thus the diffi-
culties of dealing with the corresponding off-diagonal elements are avoided.
The hole–particle and particle–hole blocks are changed by the semicanonical
transformation but do not vanish, fia �= 0, fai �= 0, and remain as a part of
the perturbation V̂N, which has the effect of mixing the occupied and virtual
spaces. With the semicanonical transformation, the only one-electron ver-
tices that need to be included in the diagrams on the r.h.s. of the iterative
CC equations are those that represent fia and fai interactions, which are
easy to deal with in CC theory (unlike in MBPT) because they add very few
diagrams. The iterations of the CC equations indirectly introduce all the
noncanonical HF diagrams that would proliferate excessively in standard
MBPT, and thereby the CC approach offers a far more effective evaluation
of these contributions than individual MBPT diagrams. This is the basis
for the GMBPT method to be discussed in the next section.

Because of the Thouless theorem (Thouless 1960), which states that any
Slater determinant in a given Hilbert space can be generated from any other
Slater determinant in that space by the application of an operator of the
form eT̂1 , CC results at the CCSD level and beyond are much less sensitive
than the corresponding CI results to the choice of reference determinant.
This property of the CC method opens the door for the effective use of
many convenient single-determinant choices as bases for CC expansions.
One interesting possible choice is the Kohn–Sham determinant of density-
functional theory (Kohn and Sham 1965), which is formulated to provide
the exact electron density for the system. Another possible choice is a de-
terminant composed of the N highest-occupancy natural spinorbitals (the
so-called first natural configuration), for which the density matrix has max-
imum overlap with the exact one-particle density matrix (Löwdin 1955).
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Yet another is a determinant composed of Brueckner orbitals (the refer-
ence determinant for which all single-excitation contributions to the exact
wave function vanish), which has maximum overlap with the exact wave
function.

A particular case of substantial interest is the use of a restricted open-
shell Hartree–Fock (ROHF) reference function (Rittby and Bartlett 1988).
Unlike unrestricted HF (UHF), this approach to open-shell problems em-
ploys an HF calculation that enforces all spin conditions, and often all or
some point-group symmetry requirements, of the exact solution. In partic-
ular, the ROHF determinant has the maximum number of doubly occupied
spatial orbitals consistent with the required multiplicity. The choice of an
ROHF reference function can be beneficial in many cases, including treat-
ments of the excited states of radicals by the EOM–CC method described in
Chapter 13 (Hirata, Nooijen and Bartlett 2000a). Of course, as the full-CI
level is approached, the dependence of the results on the choice of orbitals
disappears.

For ROHF–CCSD(T) (Watts, Gauss and Bartlett 1993) and ROHF–
MBPT (Lauderdale, Stanton, Gauss et al. 1991), as well as for ROHF–CCSD
gradients (Gauss, Lauderdale, Stanton et al. 1991), the ROHF orbitals are
used to construct the (noncanonical) spinorbital Fock matrix; this is fol-
lowed by a semicanonical transformation to diagonalize the hole–hole and
particle–particle blocks. As a result of this transformation, the spatial parts
of the α and β spinorbitals are no longer equal in pairs and so the CC cal-
culations are carried out in a spinorbital-based formalism in the same way
as in a calculation based on a UHF reference function.

Another case of interest is the use of a so-called quasi-RHF (QRHF) ref-
erence function (Rittby and Bartlett 1988). In this approach, SCF orbitals
from a related system are used to treat the system of interest. For example,
the HF orbitals of CH+

3 (a closed-shell system) can be used to study the
CH

�

3 radical or the CH−
3 ion, or the the HF orbitals of any of these systems

can be used to study the others. If the orbitals of the radical are to be used
then they would be taken from either the spin-α set or the spin-β set). This
QRHF reference function is in no way variationally optimal for the problem
addressed, but that deficiency is much less important in CCSD and higher
CC levels than in CI and MBPT calculations, because of the Thouless theo-
rem. In particular, QRHF orbitals are very useful when studying hole states
of ions created by the excitation of an electron from an orbital other than
the highest occupied. The HF orbitals of the neutral species can be used in
the calculation, their occupancy in the reference determinant being adjusted
to describe the desired hole state, thus avoiding the potential for variational
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collapse that would be present if the reference function were to be optimized
for the ion.

12.3 Generalized many-body perturbation theory

As discussed in Section 9.5 and in Chapter 10, iterations of the CC equations
can easily be used to generate MBPT solutions for the usual case of an
HF reference function with a diagonal zero-order Hamiltonian. Using the
non-diagonal zero-order Hamiltonian (12.16) of the previous section and a
semicanonical transformation, order-by-order generalized MBPT (GMBPT)
solutions can be obtained for the non-diagonal case (subsection 2.4.5) from
the corresponding CC iterations for arbitrary reference determinants. For
example, the CC correlation energy,

∆E =
×

D1

+

D2

+

D3

, (12.18)

can be expanded in orders of MBPT:

∆E = E(2) + E(3) + E(4) + . . . , (12.19)

where, for example,

E(2) =
×

D
(2)
1

(1)
+

D
(2)
2

(1)
. (12.20)

The first-order amplitudes are obtained explicitly from the first-order CCSD
equations (noting that the diagonal fii and faa interactions are of zero order)

×
(1)

+ ×
(1)

+
×

= 0 , (12.21)

×
(1)

+ ×
(1)

+ = 0 , (12.22)

which, with the semicanonical transformation, simplify to

(faa − fii)t
a(1)
i + fai = 0 , (12.23)

(faa + fbb − fii − fjj)t
ab(1)
ij + 〈ab‖ij〉 = 0 . (12.24)
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Noting that fii = εi, fii − faa = εa
i etc., the insertion of these amplitudes

into the second-order energy expression (12.20) provides the GMBPT(2)
approximation,

E(2) =
×

×
+ , (12.25)

having the same components as the diagonal-case MBPT(2) energy, (5.9),
(5.10).

Continuing to third order (compare with the diagonal CCD case in
Fig. 9.3), we obtain

E(3) =
×

D
(3)
1

(2)
+

D
(3)
2

(2)
+

D
(3)
3

(1) (1)
. (12.26)

Knowing the first-order amplitudes, the second-order amplitudes in this
equation are obtained explicitly from

×
(2)

+
(1)

+
(1)

+ ×
(1)

= 0 , (12.27)

×
(2)

+
(1)

+
(1)

= 0 , (12.28)

where each skeleton represents the sum of the corresponding diagrams with
all distinct arrow assignments. Substituting the resulting first-order and
second-order amplitudes, the GMBPT(3) energy is obtained as

E(3) =
×

+
×

×
+

× ×

+ +
×

+
× ×

. (12.29)

Note the introduction of factorized-denominator MBPT diagrams,

× ×
=

1
2

( ×
× +

×
×

)

=
1
2
〈ab‖ij〉fiafjb

εab
ij

(
1
εa
i

+
1
εb
j

)
=

1
2
〈ab‖ij〉fiafjb

εa
i ε

b
j

, (12.30)
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Fig. 12.2. GMBPT electron affinity of the CN radical. • UHF, ◦ ROHF.

with a similar result for

× ×
=

1
2

(
×

× +
×

×
)

. (12.31)

The diagrams of (12.31) are conjugate (Section 5.5) to those of (12.30), and
their values are complex conjugates of each other. Their sum is equal to
twice the real part of either:

× ×
+

× ×
= Re

(〈ab‖ij〉fiafjb

εa
i ε

b
j

)
. (12.32)

These denominator factorizations and summations are automatically incor-
porated in CC diagrams. As seen in (12.29), the GMBPT expansion for the
energy is necessarily Hermitian, unlike the CC energy expression.

Extensions to higher orders of the explicit expression of the GMBPT
energies in terms of MBPT diagrams can be made, but there is little reason
to do so since the accumulated CC amplitudes naturally account for all
higher-order diagrams including the proliferating non-HF (fai-dependent)
terms. Obviously the latter terms do not appear when canonical HF orbitals
are used and, since the semicanonical transformation also eliminates the off-
diagonal fij and fab terms, the above procedure also regains the MBPT
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diagrams for the canonical HF case. The result is a seamless treatment of
MBPT for any choice of single-determinant reference functions and orbitals.

A comparison of ROHF-based and UHF-based GMBPT results for the
electron affinity of the CN radical, computed as the energy difference be-
tween CN �and CN−, is shown in Fig. 12.2 ((Lauderdale, Stanton, Gauss et
al. 1991). In this example, excessive spin contamination in the UHF refer-
ence function causes very slow convergence of the corresponding GMBPT
values in comparison with the ROHF case; ROHF-based GMBPT provides
a satisfactory result even at second order, while the UHF-based calculation
(which is the same as MBPT) does not approach the infinite-order CCSD
result even at fourth order. As expected, because of the low sensitivity of
CC theory to the choice of orbitals, the CCSD results for the two reference
functions are almost identical.

12.4 Brueckner orbitals and alternative treatments of T̂1

The number of diagrams involving T̂1 can be quite large, making the expres-
sions for the various CC approximations appear unnecessarily formidable.
Most of this apparent complexity is removed in the pseudolinear form of the
equations through the use of the intermediates (effective-Hamiltonian dia-
grams) introduced in Section 10.7. However, there are some advantages in
removing T̂1 from the equations by a transformation to orbitals in terms of
which T̂1 = 0. Such orbitals are known as Brueckner orbitals (Nesbet 1958,
Löwdin 1962b). Another approach is to hide T̂1 in an effective Hamiltonian

H̃ = e−T̂1ĤNeT̂1 . (12.33)

The second approach is more general, and we shall consider it first.
Because all T̂m operators commute with each other, we may rewrite the

CC equations in the form

Q̂
(
e−T̂2−T̂3−...H̃eT̂2+T̂3+...

)
P̂ = 0 , (12.34)

∆E = 〈0|H̃|0〉 + 〈0|e−T̂2ŴeT̂2 |0〉 = ES + ED , (12.35)

ES = 〈0|f̂NT̂1|0〉C + 1
2〈0|Ŵ T̂ 2

1 |0〉C , (12.36)

separating the energy contributions of single-excitation amplitudes, ES, from
those of double-excitation amplitudes, ED. Expanding the exponentials in
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(12.33), we obtain

H̃ = ĤN + (f̂NT̂1)C + 1
2(f̂NT̂ 2

1 )C + (Ŵ T̂1)C

+ 1
2(Ŵ T̂ 2

1 )C + 1
3!(Ŵ T̂ 3

1 )C + 1
4!(Ŵ T̂ 4

1 )C . (12.37)

The one-electron part of this operator is represented diagrammatically by
those one-electron components of the effective Hamiltonian H, i.e. χia, χab,
χij and χai, (10.53)–(10.56), that do not contain T̂ vertices other than
T̂1. Similarly, the two-electron part of H̃ is represented by those terms
of (10.63)–(10.80) that do not contain T̂ vertices other than T̂1. Inspection
of the three-electron and four-electron components of H, (10.81)–(10.96),
shows no terms with T̂1 vertices exclusively, so none of these contribute to
H̃. Thus H̃ is a normal-product two-electron operator, just like ĤN, and its
evaluation is equivalent to a transformation of the original one-electron and
two-electron integrals (the elements of ĤN) into the elements of H̃ except
that, unlike ĤN, H̃ is not Hermitian.

A possible strategy for solving the CC equations is to build the H op-
erator first and then use it instead of ĤN in the CC equations, omitting
T̂1-containing terms. However, T̂1 and thus H̃ depend on the solution of the
CC equations and so an iterative procedure is required for the construction
of H̃. Each iteration requires re-solving the CCD (and CCDT) equations
using H̃ instead of ĤN, recomputing the T̂1 amplitudes from the CCSD
singles equation, Fig. 10.2, and transforming the elements of H̃ to corre-
spond to the updated T̂1 amplitudes. This transformation involves an n5

computational process, which is less demanding than the n 2
hn 4

p algorithm
needed for the solution of the CCD equations and much less than that for
CC equations that retain triple and higher excitations. For algorithms that
use the untransformed basis-set integrals directly, H̃ can also be represented
conveniently in terms of the basis functions (Koch, Christiansen, Kobayashi
et al. 1994).

Brueckner orbitals can be defined, within a given one-electron Hilbert
space, by either of two equivalent conditions on the orbitals occupied in the
reference determinant: (a) the requirement that single-excitation contribu-
tions to the exact wave function vanish (Nesbet 1958) or (b) the requirement
that the reference determinant has maximum overlap with the exact wave
function (Löwdin 1962b). The equivalence of these conditions can be seen
by considering the overlap between |ΦB〉, the Brueckner reference determi-
nant, and the exact wave function |Ψ〉. Since any reference determinant can
be converted to any other determinant constructed in the same one-electron
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Hilbert space by a one-electron exponential operator of the form eT̂1 (Thou-
less 1960), we can write the unnormalized Brueckner determinant in the
form

|ΦB〉 = eT̂1 |0〉 . (12.38)

Requiring stationarity of the overlap with respect to the components of T̂1

leads to

0 =
∂

∂tai
〈Ψ|eT̂1 |0〉 = 〈Ψ|â†îeT̂1 |0〉 = 〈Ψ|(ΦB)a

i 〉 , (12.39)

showing that single excitations from the Brueckner determinant do not con-
tribute to the exact wave function, so that T̂1 = 0; hence conditions (a) and
(b) are equivalent.

Determining the Brueckner orbitals requires an iterative process. To de-
termine a new set of T̂1 amplitudes from the current T̂2 amplitudes, the
normal procedure uses the leading terms of the CCSD single-excitation equa-
tion, Fig. 10.2:

× + + + × + × = 0 . (12.40)

The higher-order terms involving T̂2 will be unimportant compared with the
two T̂2 diagrams in (12.40). If explicit consideration of triples is of interest
in the generation of Brueckner orbitals then the T̂3 diagram S7, (10.31), can
be added. It should be recognized, however, that the first approximation
of T̂3 can be deduced from T̂2 anyway, using the second-order T̂1a and T̂1b

diagrams of the CCSDT triples equations, Fig. 10.5, and comparing them
with the first-order Ŝ2a and Ŝ2b diagrams of the CCSD singles equation,
Fig. 10.2.

Once a new set {tai } of T̂1 amplitudes has been obtained from (12.40), it is
used to define a new set of orbitals by modifying the transformation matrix
C(0) defining the current orbitals {φ(0)

p } in terms of the basis functions {χµ},
(11.99), according to

Cµi = C
(0)
µi +

∑
a

C(0)
µa tai ,

Cµa = C(0)
µa −

∑
i

C
(0)
µi tai ,

(12.41)

where C is a new transformation matrix (Chiles and Dykstra 1981). The
transformed orbitals are orthonormalized, and the process is repeated by
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re-solving the CCSD doubles equations for T̂2 using just the leading T̂1

contributions from Fig. 10.3,

+ , (12.42)

plus all the T̂2 terms of the CCD equations, Fig. 9.2. Then (12.40) is solved
again for new T̂1 amplitudes. As this process is iterated, the T̂1 ampli-
tudes get progressively smaller, and the importance of the T̂1 contributions
in CCSD (and higher) equations diminishes until they can be neglected al-
together. At this point we have a set of Brueckner orbitals. With proper
organization, this procedure can be made nearly as efficient as using pre-
determined HF or other orbitals in CC calculations.

An advantage of Brueckner-orbital-based CC (B-CC) calculations is that,
with T̂1 = 0, the effects of many nonlinear terms that are not included in
CCSD, such as those due to T̂1T̂3 and T̂1T̂4 products, do not contribute in
B-CC calculations and thus do not constrain the accuracy of the B-CCD or
B-CCDT results. Furthermore, the exact vanishing of the T̂1 contributions
in B-CC calculations of one-body reduced density matrices and electronic
properties (Chapter 11), besides greatly reducing the number of diagrams
that need to be included, may contribute to the accuracy of these density ma-
trices, in which T̂1 terms often play a significant role (Bartlett, Grabowski,
Hirata et al. 2005).

A comparative study of several difficult, potentially multireference, prob-
lems at the CCSDT level using B and HF orbitals was reported by Watts
and Bartlett (1994). Extensive applications of B-CCD (referred to as BD)
and B-CCD(T), including analytical gradients, were reported by Handy,
Pople, Head-Gordon et al. (1989) and by Raghavachari, Pople, Replogle,
et al. (1990).

Finally, for symmetry-broken cases, e.g. the comparative energy of the
C2v and D3h forms of the open shell NO3 molecule (Stanton, Gauss and
Bartlett 1992), B-CC has been felt to have some advantages. Using B or-
bitals the two geometries can be described equivalently without the use
of broken-symmetry orbitals, unlike the case for UHF or other choices of
orbitals that may vary discontinuously as the symmetry of the molecular
geometry changes. Obviously, all EOM-CC calculations (see Chapter 13)
can be performed with B or any other orbitals, as can all property
calculations.
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12.5 Monitoring multiplicities in open-shell coupled-cluster
calculations

The ability to use RHF, UHF, ROHF, QRHF, B (Brueckner), KS (Kohn–
Sham), NO (natural orbitals) or any other single-determinant reference func-
tion, as discussed in Section 12.2 for example, provides a very useful flex-
ibility in the application of CC methods to diverse problems. However,
applications of these methods to open-shell states do not always result in
pure-spin solutions. This deficiency is particularly evident for UHF refer-
ence functions, but even for ROHF the truncated CC wave function can
deviate to some extent from being an Ŝ2 eigenfunction. Thus an indicator
of the quality of an open-shell CC solution is provided by computing its Ŝ2

expectation value. For an accurate solution this value should equal S(S+1),
corresponding to the spin multiplicity 2S + 1 of the desired electronic state.
The deviation of the computed expectation value from the correct eigenvalue
is a useful diagnostic for the accuracy of the solution. Of course, all deter-
minants contributing to the CC expansion are expected to be composed of
pure spinorbitals and to be Ŝz eigenfunctions having the same value of Sz.

Single-reference CC theory with an arbitrary single-determinant reference
function treats spin passively, as opposed to most CI calculations, in which
the spin-eigenstate requirement is enforced in every term (configuration state
function) of the CI expansion. An untruncated, converged CC wave function
is a spin eigenfunction, satisfying

ĤΨ = EΨ , (12.43)

Ŝ2Ψ = S(S + 1)Ψ . (12.44)

Approximate solutions Ψapprox, such as in truncated CC, do not necessarily
satisfy the spin eigenvalue equation (12.44). For such solutions we can derive
an approximate value S of the spin quantum number S using the projected
value 〈Ŝ2〉proj, defined by

〈Ŝ2〉proj ≡ 〈0|Ŝ2|Ψapprox〉 = S(S + 1) . (12.45)

Equation (12.45) constitutes a quadratic equation for S in terms of 〈Ŝ2〉proj,
with the solution (Purvis, Sekino and Bartlett 1988)

2S + 1 =
√

1 + 4〈Ŝ2〉proj . (12.46)

Satisfying the condition S = S does not generally guarantee an exact wave
function, but for open-shell states the amount by which S differs from the
exact quantum number S is normally a useful measure of the quality of the
solution.
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A more appropriate measure of the spin property for CC wave functions
(Stanton 1994) is provided by an expectation-value form based on the re-
sponse treatment of properties (Chapter 11):

〈Ŝ2〉resp = 〈0|(1 + Λ)e−T̂ Ŝ2eT̂ |0〉 . (12.47)

This expectation value can be computed easily using the response density
matrices (Section 11.7), as shown in the following analysis (Purvis, Sekino
and Bartlett 1988, Stanton 1994). Of course, computation of the response
density matrices requires the solution of the Λ equations, as would be re-
quired for any property calculation, including that of gradients and second
derivatives.

To evaluate the matrix elements of Ŝ2 we use the well-known relationship

Ŝ2 = Ŝ−Ŝ+ + Ŝ 2
z + Ŝz , (12.48)

where Ŝ+ and Ŝ− are the spin raising and lowering operators, respectively.
Here

Ŝ+ =
∑

µ

ŝµ+ , Ŝ− =
∑

µ

ŝµ− , Ŝz =
∑

µ

ŝµz (12.49)

(the sums are over the electrons), with

ŝ+α = 0 , ŝ+β = α ,

ŝ−α = β , ŝ−β = 0 ,

ŝzα = 1
2α , ŝzβ = −1

2β .

(12.50)

Using (12.50), the operators can be represented in second-quantized form as
(Purvis, Sekino and Barlett 1988)

Ŝ− =
∑
pβqα

∆pβqα p̂†β q̂α , Ŝ+ =
∑
rαsβ

∆rαsβ
r̂†αŝβ , (12.51)

Ŝz =
∑
pq

〈p|ŝz|q〉p̂†q̂ = 1
2

∑
pα

p̂†αp̂α − 1
2

∑
rβ

r̂†β r̂β = 1
2∆n̂ , (12.52)

where the sums over pα and qβ are over spinorbitals with spin α and spin
β, respectively, ∆pq is the overlap integral between the spatial parts of the
spinorbitals p and q, ∆n̂ = n̂α− n̂β and n̂α and n̂β are the number operators
for spinorbitals with spin α and spin β, respectively, returning the numbers
nα and nβ of the corresponding spinorbitals in the determinants on which
they operate. In any wave function which is an eigenfunction of Ŝz all
determinants have the same values of nα and of nβ . When Ŝ+ is applied
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to a “high-spin” determinant (a determinant in which all singly occupied
orbitals have spin α) the result is zero, so the first term in (12.48) can be
ignored in such cases.

Using Wick’s theorem, we have

Ŝ−Ŝ+ =
∑

pβqαrαsβ

∆pβqα∆rαsβ
p̂†β q̂αr̂†αŝβ

=
∑

pβqαrαsβ

∆pβqα∆rαsβ
{p̂†β q̂αr̂†αŝβ} +

∑
aαpβsβ

∆pβaα∆aαsβ
{p̂†β ŝβ}

−
∑

iβqαrα

∆iβqα∆rαiβ{r̂†αq̂α} +
∑
iβaα

∣∣∆iβaα

∣∣2 , (12.53)

where {· · · } indicates the normal-ordered product, the second and third
terms result from single contractions and the last term results from a double
contraction. Similarly,

Ŝz = 1
2

(∑
pα

p̂†αp̂α −
∑
pβ

p̂†β p̂β

)

= 1
2

(∑
pα

{p̂†αp̂α} −
∑
pβ

{p̂†β p̂β}
)

+ 1
2

(∑
iα

1 −
∑
iβ

1
)

= 1
2{∆n̂} + 1

2∆n , (12.54)

Ŝ 2
z = 1

4

(
{∆n̂} + ∆n

)2
= 1

4{∆n̂}2 + 1
2{∆n̂}∆n + 1

4(∆n)2 , (12.55)

where {∆n̂} = {n̂α}−{n̂β} and ∆n = nα−nβ (note the distinction between
the operator ∆n̂ and the number ∆n).

The vacuum expectation value of Ŝ2 is obtained by collecting the fully
contracted terms of (12.53)–(12.55):

〈0|Ŝ2|0〉 =
∑
iβaα

∣∣∆iβaα

∣∣2 + 1
2∆n

(
1
2∆n + 1

)
. (12.56)

In an ROHF-based high-spin calculation the overlap terms vanish and the
last term clearly gives S(S+1). The remaining terms constitute the normal-
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product part of Ŝ2,

Ŝ2
N = Ŝ2 − 〈0|Ŝ2|0〉

=
∑

pβqαrαsβ

∆pβqα∆rαsβ
{p̂†β q̂αr̂†αŝβ}

+
∑

aαpβsβ

∆pβaα∆aαsβ
{p̂†β ŝβ} −

∑
iβqαrα

∆iβqα∆rαiβ{r̂†αq̂α}

+ 1
4{∆n̂}2 + 1

2{∆n̂}
(
∆n + 1

)
. (12.57)

The normal-product number operators {n̂α} and {n̂β} provide the excess
number of α and β spinorbitals, respectively, relative to the Fermi vacuum
state, in the determinant on which they operate. In normal CC calculations
this number is zero for all determinants with nonzero amplitudes, so that
the terms in the last line of (12.57) may usually be left out. In EOM–CC
(Chapter 13) or Fock-space MRCC (Chapter 14) these excess-occupancy
numbers may be nonzero but are known numbers that are the same for all
determinants in the computed wave function and can simply replace the
corresponding operators in the last line of (12.57).

Substituting (12.57) (without the contributions from the last line) into
(12.47) and comparing the result with the response density matrices (11.88)
and (11.89), we see that the response expectation value of Ŝ2

N can be com-
puted easily from these density matrices and the overlaps between the spatial
parts of the α and β spinorbitals,

〈Ŝ2
N〉resp =

∑
pβqαrαsβ

∆pβqα∆rαsβ
(ΓN)qαsβpβrα

+
∑

aαpβsβ

∆pβaα∆aαsβ
(γN)sβpβ

−
∑

iβqαrα

∆iβqα∆rαiβ (γN)qαrα .

(12.58)

12.6 The A and B response matrices from the
viewpoint of CCS

In the response treatment of properties in Section 11.8 we derived the CPHF
equations for the determination of orbital changes due to a perturbation. An
alternative way to view such orbital relaxation can be developed using the
tools of CC theory (Paldus 1990).

Consider the (connected) expectation value for the CC-singles (CCS) wave
function,

E = 〈0|eT̂ †
1 ĤeT̂1 |0〉C . (12.59)
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Expansion of the exponentials up to quadratic terms gives

E = 〈0|Ĥ + T̂ †
1 Ĥ + ĤT̂1 + T̂ †

1 ĤT̂1 + 1
2 T̂ † 2

1 Ĥ + 1
2ĤT̂ 2

1 |0〉C + · · · . (12.60)

Optimization of this expression with respect to the T̂ †
1 amplitudes, i.e. set-

ting δE/δti∗a = 0, results in

〈Φa
i |Ĥ + ĤT̂1 + T̂ †

1 Ĥ|0〉 = 0 , (12.61)

with a similar result for the complex conjugate. This equation is represented
diagrammatically by

× + + = 0 . (12.62)

The coefficients of the T̂1 components in the first two diagrams constitute
the elements of the singly excited CI matrix A of (11.130), while the coef-
ficients of the T̂ †

1 components in the third diagram constitute the elements
of the B matrix in (11.130). Diagrammatic representations of these ma-
trix elements can be obtained by stripping the T̂1 and T̂ †

1 vertices from the
diagrams. Using the non-standard notation introduced in Chapter 4, the
matrix elements can be represented as

Aai,bj = δij i
b

a
× + δab a

j

i
× +

ia

j b

= (εa − εi)δijδab + 〈aj‖ib〉 , (12.63)

Bai,bj = ia j b = 〈ab‖ij〉 . (12.64)

This analysis demonstrates that both matrices arise from orbital rotation,
or T̂1 terms, which is contrary to some claims that the B matrix represents
a double-excitation, or correlation, contribution. It emphasizes the role
of eT̂1 in orbital relaxation and helps to explain why the inclusion of T̂1

in CCSD and higher CC levels results in a lowered sensitivity to orbital
choices, allowing the use of QRHF and other reference functions that are
not variationally optimum for the system being studied. It also shows that
there is some overlap between the role of eT̂1 in orbital rotation and explicit
imposition of the CPHF conditions in the relaxed density matrix.
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12.7 Noniterative approximations based on the CC energy
functional

Following on from the introduction of the CC energy functional (11.62),
it is useful to reconsider the noniterative triple- and quadruple-excitation
corrections to CC on the basis of this functional (Kucharski and Bartlett
1998a,b, Crawford and Stanton 1998) as an alternative to the treatment in
terms of the CC expectation value, given in Sections 10.5 and 10.6.

The CC energy functional (11.67) can be written as

E =
〈
0
∣∣(1 + Λ)H

∣∣0〉
C

=
〈
0
∣∣(1 + Λ)

(
ĤNeT̂

)
C

∣∣0〉
C

=
〈
0
∣∣(1 + Λ)

[
(F̂N + Ŵ )(1 + T̂ + 1

2 T̂ 2 + · · · )
]
C

∣∣0〉
C

. (12.65)

Assuming that a CCSD solution for Λ and T̂ has been obtained, we focus
on the terms in the CCSDT correlation-energy expression that depend upon
T̂3 and/or Λ3 and isolate those terms that can contribute to this energy in
fourth order,

E
[4]
T =

〈
0
∣∣[Λ3

(
F̂ d

NT̂
[2]
3

)
C

+ Λ3

(
Ŵ T̂

[2]
2

)
C

+ Λ2

(
Ŵ T̂

[2]
3

)
C

+ Λ1

(
Ŵ T̂

[2]
3

)
C

+ Λ2

(
F̂ o

NT̂
[2]
3

)
C

]∣∣0〉
, (12.66)

where F̂ d
N and F̂ o

N stand for the diagonal and off-diagonal parts of F̂N, re-
spectively.

The T̂
[2]
3 amplitudes are obtained from the second-order diagrams in the

CCSDT triple-excitation equation (diagrams T1a, T1b and the diagonal part
of diagrams T2a, T2b of Fig. 10.5, see also Table 10.3):(

Ŵ T̂2

)
C
|0〉 +

(
F̂ d

NT̂
[2]
3

)
C

∣∣0〉
= 0 , (12.67)

where T̂2 is taken from the CCSD solution. This condition means that the
first two terms on the r.h.s. of (12.66) cancel through fourth order, and we
are left with

E
[4]
T =

〈
0
∣∣[Λ2

(
Ŵ T̂

[2]
3

)
C

+ Λ1

(
Ŵ T̂

[2]
3

)
C

+ Λ2(F̂ o
NT̂

[2]
3 )C

]∣∣0〉
, (12.68)

which is represented diagrammatically as follows:

E
[4]
T =

(2)
+

(2)
+ ×

(2)
; (12.69)

the third diagram vanishes in the Hartree–Fock case.
Since Λ = T † at first order (and at second order in the HF case), this ap-

proximation is very close to the original orbitally invariant CCSD(T) form
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(10.39)–(10.41) except that, because of the time-inversion asymmetry be-
tween Λ and T̂ (Section 11.7), we cannot simplify further the first diagram
as in (10.39).

This Λ-based ΛCCSD(T) model was shown to have the prospect of being
a better approximation than the usual CCSD(T) (Kucharski and Bartlett
1998a, Crawford and Stanton 1998). Unlike the latter, however, it requires
solutions for both Λ and T̂ . Nevertheless it is better for describing bond
breaking, which recommends it for the treatment of transition states that
do not differ too much from equilibrium geometry. No noniterative approx-
imation can be fully satisfactory for large deviations from the equilibrium
geometry since, depending upon the choice of reference function, the pertur-
bation theory that underlies the noniterative correction can fail in such cases.

To apply the Λ-based approach to connected quadruple excitations, we
start from the CCSDT solution and focus on the terms involving Λ4 and
T̂

[3]
4 in the CCSDTQ equation. Proceeding in the same way as for the triples

correction, and noting that T̂
[3]
4 satisfies the third-order CCSDTQ equation[(

F̂ d
NT̂

[3]
4

)
C

+ 1
2

(
Ŵ T̂ 2

2

)
C

+
(
Ŵ T̂3

)
C

]∣∣0〉
= 0 , (12.70)

where T̂2 and T̂3 are taken from the CCSDT solution, the T̂4 correction is
obtained as

EQ =
〈
0
∣∣[Λ3

(
Ŵ T̂

[3]
4

)
C

+ Λ2

(
Ŵ T̂

[3]
4

)
C

+ Λ3

(
F̂ o

NT̂
[3]
4

)
C

]∣∣0〉
, (12.71)

or, in diagrammatic form,

EQ =
(3)

+
(3)

+ ×
(3)

; (12.72)

this definies the ΛCCSDT(Q) model.
Unlike ΛCCSD(T), which contains only (generalized) fourth-order correc-

tions, this model includes terms of both fifth order (the second diagram in
(12.72)) and sixth order (the first and third diagrams). The computational
effort for the first diagram, which is the rate-determining step in the calcu-
lation of this correction, is proportional to n 4

hn 5
p , which may be compared

with n 3
hn 4

p for the triples correction. If we limit ourselves to a fifth-order
correction, as in (10.48), we obtain

E
[5]
Q =

(3)
, (12.73)

and the resulting computational effort is of order n 4
hn 4

p . Furthermore, if
we use a factorization similar to that used in Section 10.6, (10.49), (10.50),
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though this factorization is not quite rigorous in this case because of the
use of Λ, we obtain a ΛCCSDT(Qf) analog of the CCSDT(Qf) correction
(Kucharski and Bartlett 1998a):

∆E
[5]
Qf

= 1
2

〈
0
∣∣Λ2T̂

†(1)
2

[
Ŵ (T̂3 + 1

2 T̂ 2
2 )

]
C

∣∣0〉
. (12.74)

In this fifth-order approximation we avoid the need for computing T̂
[3]
4 , and

the computational effort remains that of the underlying CCSDT, propor-
tional to n 3

hn 5
p . For (12.74) itself the computational scaling is of order nhn

5
p

for the T̂ 2
2 term and n 2

hn 5
p for the T̂3 term. Odd-order contributions, how-

ever, tend to be less stable than those based on even orders of perturbation
theory.

Several noniterative approximations for triple- and quadruple-excitation
contributions to CCSD and their applications were described by Kucharski
and Bartlett (1998a,b) and by Gwaltney and Head-Gordon (2001). Appli-
cations of the unfactorized fifth-order quadruples correction were given by
Hirata, Fan, Auer et al. (2004), while applications of the sixth-order correc-
tion were considered by Bomble, Stanton, Kállay et al. (2005). A critical
comparison of various quadruples corrections and their performance in stud-
ies of bond breaking was presented by Musia�l and Bartlett (2005).

12.8 The nature of the solutions of CC equations

The CC amplitude equations are nonlinear, as are the Hartree–Fock equa-
tions, and therefore have multiple solutions (Kowalski and Jankowski 1998).
The number and character of the solutions of the CC equations have been
investigated by several researchers (Živkowič 1977, Živkowič and Monkhorst
1978, Paldus, Takahashi and Cho 1984, Jankowski and Kowalski 1999a–d,
Jankowski, Kowalski, Grabowski et al. 1999, Piecuch and Kowalski 2000).
These questions are of no practical concern for most CC applications but
are of theoretical interest for the understanding of the CC method in all its
aspects.

In practice, in single-reference CC we are usually interested in a spe-
cific electronic state (most often the ground state) and choose the reference
function to be a reasonable approximation to the exact wave function for
that state. As long as that reference function is a good approximation, and
barring pathological cases such as near degeneracies, the usual iterative pro-
cedures for the solution of the CC equations converge to the one desired
solution, the so-called standard solution. In almost all ground-state calcula-
tions at near-equilibrium geometries, at least when the orbitals are real the
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standard solution is well behaved, with amplitudes that are small relative
to unity, and results in a real energy. However, when the reference function
is not the dominant component of the exact solution, which can happen in
cases of near degeneracy or of many excited states, the standard solution may
produce a complex energy even for real orbitals; this was demonstrated, for
example, by Paldus, Takahashi and Cho (1984) in model calculations using
semiempirical π-electron Hamiltonians for some cyclic aromatic hydrocar-
bons. (Paldus, Takahashi and Cho used complex orbitals, but their results
should be invariant under a transformation to real orbitals.) The imaginary
component of any CC energy result is unphysical, being an artefact of the
non-Hermiticity of the CC effective Hamiltonian, and it is reasonable to
ignore it. (Imaginary energy components are a proper result in some scat-
tering calculations, where they determine the width of resonances, but are
not proper components of stationary-state energies.)

Research on the number and nature of all the solutions of the CC am-
plitude equations, and particularly the work of Jankowski and Kowalski
(1999a–d) and Jankowski, Kowalski, Grabowski et al. (1999), was summa-
rized in the extensive review by Piecuch and Kowalski (2000). For the full
coupled-cluster (FCC) model, in which the CC cluster operator T̂ is not
truncated, the number of solutions is equal to the number of solutions of
the full-CI (FCI) model that are not orthogonal to the reference function.
(Solutions that are orthogonal to the reference function cannot be repre-
sented in intermediately normalized form.) Furthermore the wave functions
obtained for the various solutions are orthogonal to each other, and all the
corresponding energies (which are eigenvalues of their respective effective
Hamiltonians, with |0〉 as the corresponding right eigenfunction) are nec-
essarily real. However, when the CC cluster operator is truncated, as is
necessary for practical reasons in virtually all CC calculations, the number
of solutions increases substantially, the corresponding wave functions can
no longer be orthogonal to each other and many solutions become complex.
Analytic continuation methods connecting the solutions of truncated CC
equations with those of the corresponding CI equations on one hand, and
with those of the FCC (or equivalently, FCI) equations on the other hand,
show many branch points and other singularities. Many of the solutions
appear to lack physical meaning, and it is no longer possible to associate a
specific nonstandard solution unambiguously with each FCC solution.
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The equation-of-motion coupled-cluster method for
excited, ionized and electron-attached states

13.1 Introduction

The conventional, single-reference, coupled-cluster method is very effective
for electronic states dominated by a single determinant, such as most molec-
ular ground states near their equilibrium geometry. Such states are predomi-
nantly closed-shell singlet states, and CC calculations on them produce pure
singlet wave functions. But even these states become dominated by more
than one determinant when one or more bonds are stretched close to break-
ing, so that single-reference CC based on RHF orbitals is then not usually
appropriate for the calculation of entire potential-energy surfaces. While
such problems can be partially treated by using UHF reference functions,
which usually separate correctly, the UHF approach makes use of symmetry
breaking and is poor in the spin-recoupling region.

Most excited, ionized and electron-attached states are open-shell states,
and CC calculations on them using UHF or ROHF orbitals do not usually
result in pure-spin wave functions. Furthermore, such states often involve
large contributions from more than one determinant and thus do not respond
well to conventional single-reference treatments.

One solution to these problems is to resort to multireference methods,
such as those described in Chapters 8 and 14, but such treatments are
still quite difficult to apply at a high enough level. An effective alterna-
tive in many cases is provided by the equation-of-motion coupled-cluster
(EOM-CC ) method (Emrich 1981, Sekino and Bartlett 1984, Comeau and
Bartlett 1993, Stanton and Bartlett 1993a). A closely related approach is the
coupled-cluster linear response (CCLR) method (Monkhorst 1977, Dalgaard
and Monkhorst 1983, Koch and Jørgensen 1990). A third related approach
is the symmetry-adapted cluster CI (SAC-CI) method (Nakatsuji 1979a,b,
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Nakatsuji, Ohta and Hirao 1981), which is conceptually similar but, because
of approximations made, is more like CI than CC.

The basic idea of EOM-CC is to start with a conventional CC calculation
on some initial state, usually a conveniently chosen closed-shall state, and
obtain the desired target state by application of a CI-like linear operator
acting on the initial-state CC wave function. Most commonly, the initial
state is the ground state, while the target state is an excited or ionic state.
Although the calculations for the two states must use the same set of nuclei in
the same geometrical arrangement and the same set of spinorbitals defining
a common Fermi state |0〉, they need not have the same number of electrons,
as shown by applications to ionization and electron-attachment processes.
Thus we distinguish excitation-energy EOM-CC (EE-EOM-CC), ionization
potential EOM-CC (IP-EOM-CC) and electron-attachment EOM-CC (EA-
EOM-CC), as well as extensions to processes such as double ionization and
double electron attachment.

13.2 The EOM-CC Ansatz

In the EOM-CC method we consider two Schrödinger-equation eigenstates
simultaneously, an initial state Ψ0 and a target state Ψk,

ĤΨ0 = E0Ψ0 , ĤΨk = EkΨk . (13.1)

The initial state is often referred to as the reference state, but we shall not
use this term in order to avoid confusion with the reference determinant |0〉.
The aim of the method is to determine the energy difference

ωk = Ek − E0 (13.2)

and related properties of the target state efficiently by canceling common
terms in the solutions for the two states before the actual calculation.

If we use the normal-product form of the Hamiltonian, equations (13.1)
become

ĤNΨ0 = ∆E0Ψ0 , (13.3)

ĤNΨk = ∆EkΨk , (13.4)

where ∆E0 = E0 − Eref and ∆Ek = Ek − Eref, with Eref = 〈0|Ĥ|0〉. Then
we have

ωk = ∆Ek − ∆E0 , (13.5)

since the same reference energy has been subtracted from both E0 and Ek.
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The initial-state coupled-cluster wave function is represented by the action
of an exponential wave operator Ω0 = eT̂ on a single-determinant reference
function |0〉,

|Ψ0〉 = Ω0|0〉 = eT̂ |0〉 . (13.6)

The operator T̂ consists solely of connected terms, and its exponential eT̂

corresponds to a sum of linked diagrams arising from T̂ and its disconnected
products. An operator R̂k is used to generate the target state from the initial
state,

|Ψk〉 = R̂k|Ψ0〉 , (13.7)

so that, using (13.6), the target-state Schrödinger equation (13.4) can be
written in the form

ĤNR̂ke
T̂ |0〉 = ∆EkR̂ke

T̂ |0〉 . (13.8)

In the EE-EOM-CC case, if all possible excitations from the initial state
are included we have

R̂k = r0 +
∑
i,a

ra
i {â†î} +

∑
i<j, a<b

rab
ij {â†îb̂†ĵ} + · · · . (13.9)

The constant term r0 is required for the description of states of the same
symmetry as the initial state; if the two states are of different symmetry
then r0 = 0. The objective then is to determine the amplitudes in the R̂k

operator. Since R̂k is an excitation operator, it commutes with the CC
cluster operator T̂ and all its components. Clearly, if R̂k is not truncated
then it will produce the full-CI result for the target state. Unlike the initial-
state wave operator Ω0 = eT̂ , this operator is linear and thus CI-like.

Multiplying (13.8) on the left with e−T̂ and using the commutation be-
tween R̂k and T̂ , we get

HR̂k|0〉 = ∆EkR̂k|0〉 , (13.10)

showing that R̂k|0〉 is a right eigenfunction of H with eigenvalue ∆Ek. It is
similar to the CI eigenvalue equation in normal-product form,

ĤNĈk|0〉 = ∆EkĈk|0〉 (13.11)

where

Ĉk = 1 +
∑
i,a

ca
i {â†î} +

∑
i<j, a<b

cab
ij {â†îb̂†ĵ} + · · · , (13.12)
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except that the operator H is non-Hermitian and therefore also has left
eigenfunctions 〈0|L̂k, with the same eigenvalues ∆Ek as the corresponding
right eigenfunctions R̂k|0〉, satisfying

〈0|L̂kH = 〈0|L̂k∆Ek . (13.13)

The operator L̂k is a de-excitation operator,

L̂k = l0 +
∑
i,a

lia{̂i†â} +
∑

i<j, a<b

lijab{̂i
†âĵ†b̂} + · · · (13.14)

and therefore satisfies

L̂kP̂ = 0 , L̂k = L̂kQ̂ . (13.15)

For the initial state (k = 0) we have R̂0 = 1̂, but L̂0 �= 1̂.
The two sets of eigenfunctions are biorthogonal and can be normalized to

satisfy

〈0|L̂kR̂l|0〉 = δkl . (13.16)

They provide a resolution of the identity,

1̂ =
∑

k

R̂k|0〉〈0|L̂k , (13.17)

as can be seen by placing this operator between any two left and right
eigenfunctions,∑

k

〈0|L̂lR̂k|0〉〈0|L̂kR̂m|0〉 =
∑

k

δlkδkm = δlm = 〈0|L̂lR̂m|0〉 .

Also, because R̂0 = 1̂ we have

〈0|L̂k|0〉 = δk0 . (13.18)

As mentioned above, the essence of the EOM-CC method is to eliminate
common terms from the target-state and initial-state treatments before the
actual calculations and thus obtain the energy difference directly. Since
R̂0 = 1, the initial-state version of (13.10) is

H|0〉 = ∆E0|0〉 . (13.19)

Multiplying this equation on the left by R̂k and subtracting it from (13.10),
we obtain the EOM-CC equation in the form

[H, R̂k]|0〉 = (∆Ek − ∆E0)R̂k|0〉

or (
HR̂k|0〉

)
C

= ωkR̂k|0〉 . (13.20)
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Comparing this equation with (13.10) we see that the restriction to con-
nected terms eliminates the ground-state correlation energy ∆E0 and the
associated diagrams from the calculation and provides the excitation energy
ωk directly.

The EOM-CC equation can be separated into blocks by the P̂ and Q̂

projection operators,[(
P̂HP̂ P̂HQ̂

Q̂HP̂ Q̂HQ̂

) (
r0P̂

Q̂R̂kP̂

)]
C

= ωk

(
r0P̂

Q̂R̂kP̂

)
. (13.21)

The corresponding initial-state (k = 0) equation, for which r0 = 1, all other
components of R̂0 vanish and ω0 = 0, is[(

P̂HP̂ P̂HQ̂

Q̂HP̂ Q̂HQ̂

)(
P̂

0

)]
C

=
(

0
0

)
, (13.22)

giving (
P̂HP̂

)
C

= 0 ,
(
Q̂HP̂

)
C

= 0 , (13.23)

the same as the initial-state CC equations (the initial-state correlation en-
ergy ∆E0 has been eliminated from the first of these equations by the
connectedness condition). Therefore we can eliminate the first column of
(13.21), obtaining (

P̂HQ̂R̂kP̂
)
C

= ωkr0P̂ , (13.24)

(
Q̂HQ̂R̂kP̂

)
C

= ωkQ̂R̂kP̂ . (13.25)

Equation (13.25) is the key equation of the EOM-CC method. It is an
eigenvalue equation for R̂k and ωk and, once it has been solved, the constant
term r0 can be obtained from (13.24). As an eigenvalue equation, its solution
benefits from the techniques, developed for the direct CI approach, based
on the Davidson algorithm (Davidson 1975) or any of its variations. This
iterative method avoids explicit evaluation of the matrix and requires instead
direct calculation of the matrix–vector product, using the current estimate
of the solution vector, in each iteration. Diagrammatic techniques are used
in EOM-CC to calculate the elements of this product, i.e. the elements of(
Q̂HQ̂R̂kP̂

)
C

, using the current estimate of the amplitudes in R̂k.
Recognizing that the energy functional defined in the treatment of prop-

erties in Chapter 11 can be written in the form

E0 = 〈0|(1 + Λ)H|0〉 = 〈0|L̂0HR̂0|0〉 , (13.26)
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where

L̂0 = 1 + Λ , R̂0 = 1 , (13.27)

we find that EOM-CC provides a natural generalization for excited states
(Stanton and Bartlett 1993a). In particular, excited-state properties are usu-
ally obtained in EOM-CC using excited-state generalizations of the ground-
state response density matrices,

(γN)k
qp = 〈0|L̂ke

−T̂ {p̂†q̂}eT̂ R̂k|0〉 . (13.28)

The dipole strength for a transition between states k and l is proportional
to the absolute square |〈Ψk|�D|Ψl〉|2 of the matrix element of the dipole
operator

�D = 〈0|�D|0〉 + �DN = 〈0|�D|0〉 +
∑
pq

�dpq{p̂†q̂} , (13.29)

where �d =
∑

µ qµ�rµ and qµ and �rµ are the electric charges and position
vectors of the particles in the system. Because of the orthogonality of Ψk

and Ψl the vacuum-expectation-value term in (13.29) does not contribute to
the matrix element 〈Ψk|�D|Ψl〉, which can be obtained from the transition
density matrix γlk

N , whose elements are

(γN)lk
qp = 〈0|L̂ke

−T̂ {p̂†q̂}eT̂ R̂l|0〉 , (13.30)

as

〈Ψk|�D|Ψl〉 = 〈Ψk|�DN|Ψl〉 =
∑
pq

(γN)lk
qp

�dpq . (13.31)

The application of EOM-CC methods to the calculation of higher-order
properties of the initial state is described below in Section 13.5. The appli-
cation of these methods to a time-dependent perturbation theory treatment
of excited states is discussed in Section 13.6.

In the following we shall drop the index k from the notation for R̂k and
ωk, and write

R̂ = r0 + R̂1 + R̂2 + · · · , (13.32)

where R̂n collects the n-tuple excitation terms of (13.9), in analogy with
the notation for T̂ = T̂1 + T̂2 + · · · . In applications to excitation-energy
calculations both R̂ and T̂ are truncated at the same excitation level. The
truncation of T̂ manifests itself in the structure of the effective Hamilto-
nian H.
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13.3 Diagrammatic treatment of the EE-EOM-CC equations

The application of diagrammatic methods to the solution of the EE-EOM-
CC equation benefits greatly from the diagrammatic representation of H
described in Section 10.7. The components of the operator R̂ are represented
by diagrams similar to the corresponding T̂ diagrams but with a heavy
horizontal line to distinguish them from the former, as in

a i

ra
i {â†î}

,
a i b j

rab
ij {â†îb̂†ĵ}

,
a i b j c k

rabc
ijk{â†îb̂†ĵĉ†k̂}

etc.

The left-eigenstate operator L̂ is represented similarly,

i a

lia{̂i† l̂}
,

i a j b

lijab{̂i†âĵ†b̂}
,

i a j b k c

lijkabc{̂i†âĵ†b̂k̂†ĉ}
etc.,

consistently with the representation of Λ in Chapter 11. However, it should
be noted that this notation masks the fact that these two sets of operators
are not adjoint to each other.

The single-excitation (R̂1, particle–hole or ph) component of the eigen-
value equation (13.25) can be written in the form

〈Φa
i |HQ̂R̂|0〉C = ω〈Φa

i |R̂|0〉 = ωra
i . (13.33)

This equation is represented diagrammatically for EE-EOM-CCSDT by the
first equation in Fig. 13.1. The fixed labels a and i are understood to
be associated with the open lines in these diagrams. The eigenvalue ω (the
excitation energy) multiplies the left-hand-side diagram of the equation. For
the last diagram we have taken advantage of (10.63). The diagrammatic
representation of the double-excitation (R̂2 or pphh) and triple-excitation
(R̂3 or ppphhh) equations for EE-EOM-CCSDT are also shown in Fig. 13.1.
These diagrams are given in terms of effective-Hamiltonian vertices; actual
calculations use intermediates and factorization techniques along the lines
of Section 10.7 (Kucharski, W�loch, Musia�l et al. 2001, Musia�l, Kucharski
and Bartlett 2003, Musia�l and Bartlett 2003). Once the eigenvalue problem
has been solved and the excitation energy ω is available, the constant term
r0 can be obtained from (13.24); this is represented diagrammatically as
follows:

ωr0 = + . (13.34)

The algebraic forms of the EE-EOM-CCSDT equations are shown in Fig. 13.2.
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= + + + +

+ +

= + + + +

+ + + + +

+ + +

= + + +

+ + + +

+ + +

+ + + +

+ +

Fig. 13.1. Diagrammatic representation of the EE–EOM–CCSDT equations.

In analogy with the case of the Λ equations in Section 11.6, in order to
generate diagrams describing the contributions of R̂m vertices to the R̂n

equation we need to use H vertices with n∨−n∧ = 2(n−m), where n∨ and
n∧ are the number of lines connecting to the H vertex from above and from
below, respectively.

The diagrams for the R̂ equations are not identical to the upside-down
images of the Λ-equation diagrams seen in Fig. 11.10, because of the unsym-
metrical nature of the H vertices with respect to up–down reflection. This
asymmetry, which reflects the non-Hermiticity of H, is manifested by the
limitation n∧ < 4 (except for the two-body vertex, for which n∧ = 4 is also
possible), without such limitation for n∨.
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delm
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Fig. 13.2. The EE–EOM–CCSDT eigenvalue equations, followed by the equation
for the constant term r0.
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The diagrams for the L̂ equations, representing the left eigenfunctions,
are identical to those for the Λ equations in Fig. 11.10, including the dis-
connected diagrams, because there is no connectedness condition for the
left-eigenfunction equation (13.13). The solutions for these equations are
different for each target state and different from the initial-state Λ-equation
solutions, because the energy differences ω, obtained from the solution of
the R̂ eigenvalue problem, are different for each state.

A particularly important application of EE-EOM-CC is to a class compris-
ing problems that are difficult to treat otherwise by single-reference methods:
the low-spin open-shell states, particularly open-shell singlets obtained by
a single excitation from a closed-shell state. Since most electronic states
reached by dipole-allowed optical excitation from closed-shell ground states
are open-shell singlets, such states have to be treatable in any reasonable
theoretical approach for excited states.

The zero-order approximation for an open-shell singlet state is a two-
determinant wave function,

ΦOS = 1√
2
A{(core)[φA(N − 1)α(N − 1)φB(N)β(N)

− φA(N − 1)β(N − 1)φB(N)α(N)]} , (13.35)

where “(core)” is a product of the spinorbitals occupied by the other N − 2
electrons. For this wave function, the two spinorbital determinants, de-
scribed symbolically as ab̄ and āb, appear with equal-magnitude weights.
The ab̄ − āb combination describes the singlet, while ab̄ + āb describes the
MS = 0 component of the triplet. The triplet state can easily be handled
in a single-reference treatment by using the MS = 1 or MS = −1 compo-
nent, with the zero-order descriptions ab and āb̄, respectively, but no such
alternative is available for the open-shell singlet.

A single-determinant-based CC description of the open-shell singlet state
would require using one of the two determinants in (13.35) as the refer-
ence determinant, the other determinant being part of the external space
(i.e. the Q space) in the CC expansion. At convergence both determi-
nants should have coefficients of the same magnitude (but opposite sign).
Since the reference determinant always has coefficient 1 because of interme-
diate normalization, the coefficient of the second determinant has to grow
to that same magnitude, making the basic perturbative structure for solv-
ing the CC equations poorly convergent. Of course, if we simply antici-
pate this equivalence then we can accelerate the process but even so the
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treatment would be unbalanced since the excitation levels included rela-
tive to the second determinant would be fewer than those relative to the
first.

Clearly, the EOM-CC method provides an effective solution to this prob-
lem. As seen in Section 13.2, the excited states are obtained in EOM-CC
from a matrix eigenvalue problem as eigenstates of H, and therefore there are
no restrictions on the coefficient magnitudes (the amplitudes of R̂k) in the
solutions. In particular, if the EOM-CC treatment is based on a closed-shell
initial state then all eigenstates are pure spin eigenfunctions. Even when
the EOM-CC calculation is based on an open-shell initial state, such as a
high-spin state, whether one is using ROHF (spin eigenfunctions) or UHF
to define the spinorbitals and the Fermi state in the underlying CC calcula-
tion the initial-state CC wave function does not deviate greatly from a pure
spin eigenfunction (Rittby and Bartlett 1988, Purvis, Sekino and Bartlett
1988, Stanton 1994); most EOM-CC eigenstates are found to be close to
spin eigenfunctions, as measured by the value of 〈0|L̂ke

−T̂ Ŝ2eT̂ R̂k|0〉. Fur-
thermore, the evaluation of Ŝ2 can be made a part of the EOM-CC cal-
culation, and constraints on the amplitudes can be imposed to guarantee
pure-spin eigenstates for open-shell-based calculations (Szalay and Gauss
1997, 2000).

In principle, the EE-EOM-CC method is just as effective for other low-
spin open-shell states, which may require more than two determinants for
their zero-order description. In practice higher excitations, like those due
to R̂3, should be included for the correct description of, for example, a low-
spin doublet state. Often, the EOM-CC approach, in its various forms,
can also provide an alternative to multireference methods for the treatment
of other states that are not well described by a truncated single-reference
expansion; this includes states involving bond breaking, in which several
quasidegenerate determinants need to be treated equivalently. A general-
ization of EOM-CC, the spin-flip CC method (Krylov 2001), achieves even
more flexibility for applications to open-shell states and bond breaking.

As an example, computed excitation energies at several levels of EE-EOM-
CC for three states of the CH+ ion (Hirata, Nooijen and Bartlett 2000a) are
given, with full-CI values for comparison, in Table 13.1. The initial state
in these calculations is the closed-shell ground 11Σ+ state. Since only the
four valence electrons are correlated, CCSDTQ would be equivalent to full
CI for this example. For a closed-shell HF reference function, EOM-CCS
is equivalent to CIS because the contributions of single excitations to the
ground state vanish in the absence of double excitations.



442 The equation-of-motion coupled-cluster method

Table 13.1. Excitation energies relative to the full CI results (in eV) at
several levels of EOM-CC for three states of the CH+ iona

State Full CI CCSb CCSD CCSDT-3 CCSDT Weightsc

11Π 3.2087 0.282 0.028 — 0.002 94.7/3.1
21Σ+ 8.5304 — 0.544 0.231 0.073 0.23/95.6
31Σ+ 14.304 0.548 0.062 0.022 0.003 87.5/9.5

aFrozen core, 6-31G** basis set, RCH = 1.131Å (Hirata, Nooijen and Bartlett
2000a). The various CC results are given as differences from the full-CI values.

bCCS is equivalent to CIS.
cPercentage weights of single and double excitations in the excited-state wave
function.

This simple example illustrates an important aspect of EOM-CC. When
the target state is dominated by single excitations relative to the initial
state, as measured by the weight of single excitations in the target-state
wave function, we expect satisfactory excitation energies from EOM-CCSD,
and this expectation is confirmed for the open-shell singlet states 11Π and
31Σ+ (Table 13.1). However, for states containing significant contributions
of double excitations EOM-CCSD is less accurate, sometimes by one or
more eV, because of an imbalance in the treatment of the initial and target
states. While the initial-state CCSD wave function accounts for almost
all the correlation energy for the initial state, this is not the case for an
EOM-CCSD treatment of an excited state that contains a significant double-
excitation component. Once the treatment is extended to EOM-CCSDT,
most of this inaccuracy is resolved. At the same time, such an extension also
improves the results for singly excited states, though not as dramatically.

The EOM-CCSDT-3 results included in Table 13.1 represent an approxi-
mation of full EOM-CCSDT that uses the CCSDT-3 wave function
(Table 10.4) for the initial state but does not truncate the EOM-CCSDT
R̂ equations. This approximation neglects the contribution of T̂3 to the T̂3

equations, reducing the scaling of the ground-state calculation from n 3
hn 5

p

to n 3
hn 4

p . The treatments of the initial and target states remains consistent,
since the same approximate T̂ operators are used in both.

Another instructive example is provided by the methylene (CH2) molecule
(Hirata, Nooijen and Bartlett 2000a), when excitation energies for various
states at several EOM-CC levels are compared with full CI results in a
6-31G* basis set (Table 13.2).Comparisons with full CI, which can usually
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be done only with relatively small basis sets, are more instructive than
those with experimental data, because the full-CI comparisons separate
basis-set effects from correlation-treatment effects. Furthermore, compar-
isons with experiment can involve many uncertainties, including questions
of interpretation, particularly when one is accounting for zero-level vibra-
tional contributions or extracting accurate vertical excitation energies from
high-resolution spectra. Several comparisons of EOM-CC results with ex-
perimental data can be found in the extensive review by Bartlett and Musia�l
(2007).

In this example the closed-shell lowest singlet (1A1) state is the initial
state, so that the ground state 3B1 appears as a de-excitation. Nonethe-
less, an accurate description of a full spectrum of states is readily ob-
tained. Had the open-shell ground state been used as the initial state, the
results would have been very similar but would not have produced pure-
spin eigenfunctions. Once again, large errors are encountered at the EOM-
CCSD level for states with a high percentage of double excitations. The
EOM-CCSDT-3 approximation corrects this deficiency to some extent, but
full EOM-CCSDT is needed to obtain a satisfactory description of these
states.

The use of different levels of excitation in T̂ and in R̂ has been explored
but in such a case (13.23) would no longer hold, preventing the separation
of the r0 equation (13.24) from the rest of the EOM-CC eigenvalue prob-
lem. Such an unbalanced approach would also cause difficulties in derivative
calculations for properties.

The CH+ and CH2 results quoted here could have been obtained by the
diagrammatic methods normally used for larger basis sets and molecules
(Kucharski, W�loch, Musia�l et al. 2001) but, to allow very-high-order excita-
tion levels as in EOM-CCSDTQP, an algorithm based on the availability of
the full CI Hamiltonian matrix in a determinantal representation was used
instead (Hirata, Nooijen and Bartlett 2000a); these calculations were simi-
lar to the high-order benchmark calculations for the coupled-cluster method
quoted in Chapter 10 (Hirata and Bartlett 2000).

Other comparison of calculated EOM-CC (or CCLR) excitation energies
with full-CI results can be found in Koch, Christiansen, Jørgensen et al.
(1995), Christiansen, Koch, Jørgensen et al. (1996), Meissner (1998), Larsen,
Hald, Olsen et al. (2001), Hirata (2004) and Musia�l and Bartlett (2004).

The calculation of the first and second derivatives of EOM-CC potential-
energy surfaces was described by Stanton (1993) and by Stanton and Gauss
(1995), respectively.
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13.4 EOM-CC treatment of ionization and electron attachment

Because second-quantized operators are Fock-space operators that are not
restricted to a specific number of electrons, the formalisms described here
can be used for processes involving changes in the number of electrons,
such as ionization and electron attachment. These techniques are related to
Green’s function methods (Nooijen and Snijders 1992, 1993), but Green’s
functions are normally Hermitian while EOM-CC is not.

The ionization process can be treated by using an R̂ operator that reduces
the number of electrons by one,

R̂ =
∑

i

riî +
∑

b, j>i

rb
jib̂

†ĵ î +
∑

b>c, j>k>i

rbc
jkib̂

†ĵĉ†k̂î + · · · . (13.36)

The eigenvalue equation for this operator, the IP-EOM-CC equation, is
formally the same as the EE-EOM-CC equation except that

(
HR̂|0〉

)
C

now
reflects the altered structure of the R̂ operator. Instead of the ph (particle–
hole), pphh, ppphhh etc. sectors of R̂ used in the EE-EOM-CC treatment,
in IP-EOM-CC we use the h, phh, pphhh etc. sectors. The IP-EOM-CCSD
model uses the h and phh sectors of R̂, while IP-EOM-CCSDT (Musia�l,
Kucharski and Bartlett 2003) adds the pphhh sector. The IP-EOM-CCSDT
equations are represented diagrammatically in Fig. 13.3.

Since all ionized states are preceded by a series of Rydberg excitations
that approach the ionization continuum, the eigenvalues and eigenvectors
of EE-EOM-CC smoothly approach those of IP-EOM-CC. In fact, simply
zeroing out the appropriate matrix elements in the EE-EOM-CC equations,
corresponding to the removal of an excited electron into the continuum,
will provide the IP-EOM-CC solutions (Stanton and Gauss 1999), but this
procedure does not translate into an optimal factorized CC program. The
latter requires the use of the IP-EOM-CC structure from the outset (Musia�l,
Kucharski and Bartlett 2003).

The analogous treatment of electron attachment (EA-EOM-CC) is repre-
sented in EOM-CC by using the p, pph, ppphh etc. sectors of R̂ (Musia�l
and Bartlett 2003),

R̂ =
∑

a

raâ† +
∑

a>b, j

rba
j b̂†ĵâ† + · · · (13.37)

The diagrammatic representation of these equations in terms of effective-
Hamiltonian vertices is shown in Fig. 13.4. It is clear that this representation
is identical to the corresponding representation for the IP-EOM-CC equa-
tions except that some line directions are reversed. However, this change in
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direction introduces different intermediates because of the asymmetry with
respect to time inversion of the diagrammatic expansion of H (Section 10.7).

The dimensions of the matrices in the eigenvalue equations are of order
n 2

hnp for IP-EOM-CCSD, n 3
hn 2

p for IP-EOM-CCSDT, nhn
2
p for EA-EOM-

CCSD and n 2
hn 3

p for EA-EOM-CCSDT.
Sample results, with full-CI results for comparison, for IP-EOM-CC calcu-

lations for two ionization potentials of C2 and EA-EOM-CC calculations for
two electron affinities of CH+ are given in Tables 13.3 and 13.4, respectively
(Hirata, Nooijen and Bartlett 2000b). Like the EE-EOM-CC examples de-
scribed in Section 13.3, these results were obtained by utilizing the full-CI
Hamiltonian matrix in a determinantal representation.

Analogous treatments can be applied to double-ionization (DIP-
EOM-CC) and double-electron-attachment (DEA-EOM-PP) processes by
natural extensions of the IP-EOM-CC and EA-EOM-CC methods. Dou-
ble ionization has an obvious application to Auger experiments, but both

= + + +

= + + + +

+ + + +

= + + +

+ + + +

+ + +

+ +

Fig. 13.3. Diagrammatic representation of the IP-EOM-CCSDT equations.
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= + + +

= + + + +

+ + + +

= + + +

+ + + +

+ + +

+ +

Fig. 13.4. Diagrammatic representation of the EA–EOM–CCSDT equations.

Table 13.3. Ionization potentials of C2 at several levels of IP-EOM-CC
with the full CI results (in eV) for comparisona

State CCSb CCSD CCSDT CCSDTQ CCSDTQP Full CI

1πu → ∞ 12.195 12.662 12.134 12.151 12.130 12.131
2σ−

u → ∞ 13.942 15.180 14.803 14.749 14.724 14.721

aFrozen core, 6-31G basis set, RCC = 1.262 Å (Hirata, Nooijen and Bartlett
2000b).
bThe CCS approximation is equivalent to Koopmans’ theorem.

double-ionization and double electron attachment can be useful in treating
bond breaking and some other multireference problems.

Wave functions describing the stretching and breaking of bonds in molec-
ules, such as required in calculations of potential-energy curves and sur-
faces, usually have more than one dominant configuration. In the simplest
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Table 13.4. Electron affinities of CH+ at several levels
of EA-EOM-CC, compared with full CI results (in eV)a

State CCSb CCSD CCSDT CCSDTQ Full CI

∞ → 1π 8.922 10.150 10.117 10.109 10.109
∞ → 3σ 1.159 1.701 1.734 1.740 1.741

aFrozen core, 6-31G* basis set, RCH = 1.120 Å (Hirata,
Nooijen and Bartlett 2000b).

bThe CCS approximation is equivalent to Koopmans’ theorem.

example, the breaking of a single bond in a closed-shell molecule, two con-
figurations, described symbolically as (core)a2 and (core)b2, where a and
b describe the bonding and antibonding orbitals, respectively, approach de-
generacy as the bond is stretched. Such situations can be treated by double-
electron-attachment EOM-CC, using the doubly ionized “core” state as the
initial state. Since the a and b orbitals are both in the Q-space in such a
calculation, and are treated equivalently, a proper description of the dissoci-
ation process can be obtained. In addition to the (core)a2 and (core)b2 con-
figurations, such a calculation would automatically include the (core)ab̄ and
(core)āb configurations (assuming that a and b have the same spatial sym-
metry). Alternatively, this problem can also be treated by double-ionization
EOM-CC, using the (core)a2b2 configuration as the initial state (Nooijen
and Bartlett 1997b).

An important consideration in such applications is the suitability of the
orbitals of the underlying initial-state calculation for the description of the
target state. The initial-state CC calculation is relatively insensitive to the
orbital choice because of the inclusion of the eT̂1 operator, but EOM-CC
uses a linear CI-like operator and is more sensitive. When the orbitals are
far from optimal for the target state, the EOM results are bound to reflect
this deficiency (Tobita, Perera, Musia�l et al. 2003).

The IP-EOM-CC and EA-EOM-CC methods also occur as steps in the
calculation of excitation energies by the similarity-transformed EOM-CC
(STOEM-CC) approach (Nooijen and Bartlett 1997a, b). This approach
produces results very close to those of Fock-space (multireference) CC, to
be discussed in Chapter 14.

The calculation of derivatives of potential-energy surfaces in IP-EOM-CC
has been described by Stanton and Gauss (1994). The automated generation
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of computer programs for high-order EOM-CC calculations was described
by Hirata (2003, 2004).

13.5 EOM-CC treatment of higher-order properties

The EOM-CC method generates energies and wave functions for a range of
states up to a specified excitation level relative to a given initial state. As
a result, it provides a path for the calculation of higher-order properties of
the initial state by a closed-form equivalent of the usual perturbation theory
that manifests a sum-over-states (SOS) form.

As shown in Section 13.2, the EOM-CC wave functions are obtained,
in terms of two biorthogonal sets of eigenfunctions R̂k|0〉 and 〈0|L̂k of the
CC effective Hamiltonian H = e−T̂ ĤNeT̂ , as |Ψk〉 = eT̂ R̂k|0〉 and 〈Ψk| =
〈0|L̂ke

−T̂ . The corresponding eigenvalues are the energies ∆Ek = Ek −Eref

relative to the Fermi-vacuum reference energy Eref = 〈0|Ĥ|0〉. In the per-
turbation treatment of properties it is convenient not to separate the ref-
erence energy from the total energy and therefore we define a modified
CC effective Hamiltonian, which in this context we shall denote by H

(“H-bar”) to distinguish it from H, by

H = e−T̂ ĤeT̂ = H + 〈0|Ĥ|0〉 . (13.38)

This operator has the same biorthogonal sets of eigenfunctions as H but its
eigenvalues are the total energies Ek. The energy differences ωk = Ek−E0 =
∆Ek − ∆E0 are not affected. Using (13.10), (13.13) and (13.16), we find
that

Ek = 〈0|L̂kHR̂k|0〉 . (13.39)

In particular, using (13.18) and (13.19), the initial-state energy is given by

E0 = 〈0|H|0〉 . (13.40)

Now consider a perturbed Hamiltonian

Ĥ(λ) = Ĥ0 + λΘ , (13.41)

with perturbation-strength parameter λ. An example, first discussed in
Section 11.3, is a perturbation due to an electric field λ�E, for which the
perturbation operator is given by the dot product Θ = −�E ·

∑
µ qµ�rµ, where

qµ and �rµ are the charges and position vectors of the particles in the system.
The first-order perturbed energy can be used to obtain the static dipole
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moment of the system, the second order will yield the static dipole polariz-
ability and higher-order terms yield static hyperpolarizabilities (Sekino and
Bartlett 1993).

The perturbed initial-state wave function is

|Ψ0(λ)〉 = eT̂ (λ)|0〉 . (13.42)

As is common in most applications, we have assumed that the reference
function |0〉 is not affected by the perturbation (but relaxed-orbital choices
are possible; this aspect was used previously to distinguish the relaxed and
response density matrices in Section 11.9).

The CC cluster operator T̂ (λ) can be separated into an unperturbed part
T̂0 and a perturbation (which commute with each other),

T̂ (λ) = T̂0 + ∆T̂ (λ) , (13.43)

where

∆T̂ (λ) = λT̂ (1) + λ2T̂ (2) + · · · . (13.44)

The perturbed wave function can then be written as

|Ψ0(λ)〉 = eT̂0e∆T̂ (λ)|0〉

= eT̂0 |Υ(λ)〉
(13.45)

where

|Υ(λ)〉 = e∆T̂ (λ)|0〉 = |0〉 + λ|Υ(1)〉 + λ2|Υ(2)〉 + · · · . (13.46)

Each order of |Υ〉 equals the corresponding order of T̂ |0〉 plus any products
of T̂ (n) terms that combine to give the same order,

|Υ(1)〉 = T̂ (1)|0〉 , (13.47)

|Υ(2)〉 =
[
T̂ (2) +

(
T̂ (1)

)2]|0〉 , (13.48)

|Υ(3)〉 =
[
T̂ (3) + T̂ (1)T̂ (2) +

(
T̂ (1)

)3]|0〉 (13.49)

etc.
The Schrödinger equation for the perturbed initial state Ψ0(λ) = eT̂ (λ)|0〉

is

Ĥ(λ)eT̂ (λ)|0〉 = E0(λ)eT̂ (λ)|0〉 , (13.50)

or, using (13.41) and (13.45),

(Ĥ0 + λΘ)eT̂0 |Υ(λ)〉 = E0(λ)eT̂0 |Υ(λ)〉 ; (13.51)



13.5 EOM-CC treatment of higher-order properties 451

multiplying on the left by e−T̂0 results in(
H0 + λΘ

)
|Υ(λ)〉 = E0(λ)|Υ(λ)〉 , (13.52)

where

H0 = e−T̂0Ĥ0e
T̂0 , (13.53)

Θ = e−T̂0ΘeT̂0 . (13.54)

Thus the separation of T̂ in (13.43) allowed us to absorb eT̂0 into the opera-
tors and to incorporate e∆T̂ into Υ. Projecting (13.52) onto 〈0|(1+Λ)e−∆T̂ (λ)

and noting (13.46), we obtain the perturbed energy,〈
0
∣∣[1 + Λ(λ

)]
e−∆T̂ (λ)

(
H0 + λΘ

)
e∆T̂ (λ)

∣∣0〉
= E0(λ) . (13.55)

The l.h.s. of this equation defines a corresponding CC energy functional,

E ′(Λ, T̂ ) =
〈
0
∣∣[1 + Λ(λ)]e−∆T̂ (λ)

(
H0 + λΘ

)
e∆T̂ (λ)

∣∣0〉
) , (13.56)

which is equal to E0(λ) when the functional is stationary. The prime is in-
tended to distinguish this functional from the CC energy functional E(Λ, T̂ )
of Section 11.4 which becomes equal to ∆E = E −〈0|Ĥ|0〉 when stationary,
reflecting the use of H instead of H in the present context.

Applying standard Rayleigh–Schrödinger perturbation theory (Section 2.2)
to (13.52) results in inhomogeneous equations for the various orders of Υ
and E0, subject to intermediate normalization,

(E0 − H0)|Υ(1)〉 = (Θ − E(1))|0〉 , (13.57)

(E0 − H0)|Υ(2)〉 = (Θ − E(1))|Υ(1)〉 − E(2)|0〉 , (13.58)

etc. Extracting the energies requires left-multiplication by 〈0|L0 = 〈0|(1 + Λ),
since 〈0| is not an eigenfunction of H0; we obtain

E(1) = 〈0|(1 + Λ)Θ|0〉 − 〈0|(1 + Λ)(E0 − H0)|Υ(1)〉
= 〈0|(1 + Λ)Θ|0〉 − 〈0|(1 + Λ)(E0 − H0)|T̂ (1)|0〉
= 〈0|(1 + Λ)Θ|0〉 = 〈Θ〉, (13.59)

E(2) = 〈0|(1 + Λ)(Θ − E(1))|Υ(1)〉 − 〈0|(1 + Λ)(E0 − H0)|Υ(2)〉
= 〈0|(1 + Λ)(Θ − E(1))|T̂ (1)|0〉 − 〈0|(1 + Λ)(E0 − H0)[T̂ (2) − (T̂ (1))2]|0〉
= 〈0|(1 + Λ)(Θ − E(1))|T̂ (1)|0〉 − 〈0|(1 + Λ)(E0 − H0)(T̂ (1))2|0〉 .

(13.60)

The T̂ (1) term in (13.59) and the T̂ (2) part in the second term in (13.60) are
eliminated by intermediate normalization. The quadratic term in (13.60)
remains, as does −E(1).
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As in all many-body applications, linked connected expressions are the
most desirable, producing extensive and (when appropriate) intensive re-
sults, but the presence of −E(1) does not allow that. Using the diagrammatic
techniques of Chapter 5, we find that all the expressions we have obtained
for the energy and wave function can be written in a connected and linked
form that eliminates all renormalization terms, though Λ itself is necessarily
disconnected. In particular, the second-order energy (13.60) becomes

E(2) = 〈0|(1 + Λ)
(
ΘT̂ (1)|0〉

)
C
− 〈0|(1 + Λ)

(
H0(T̂ (1))2|0〉

)
C

= 〈0|(1 + Λ)
[

Θ, T̂ (1)
]
|0〉 − 〈0|(1 + Λ)

[[
H0, T̂

(1)
]
, T̂ (1)

]
|0〉 . (13.61)

This fully connected form is the most satisfactory expression for the second-
order energy but does not correspond to an SOS form. It is also more
laborious to compute because of the quadratic term.

By providing a resolution of the identity, the biorthogonal sets of eigen-
functions of H, which constitute the basis for the sum-over-states perturba-
tion treatment, allow a separation of the Hilbert space into two complemen-
tary subspaces, defined by the projectors

P = R̂0|0〉〈0|L̂0 = |0〉〈0|(1 + Λ) (13.62)

and

Q = 1 − P =
∑
k �=0

R̂k|0〉〈0|L̂k , (13.63)

and a related resolvent (similar, but not identical, to the resolvent (11.55))

R = Q
(
E0 −QH0Q

)−1Q =
∑
k �=0

R̂k|0〉〈0|L̂k

ωk
. (13.64)

Using this resolvent (compare subsection 2.4.4) we find that

|Υ(1)〉 = RΘ|0〉 =
∑
k �=0

R̂k|0〉〈0|L̂kΘ|0〉
ωk

(13.65)

and the E(1) term is removed. This provides a linear approximation,

E
(2)
lin = 〈0|(1 + Λ)Θ|Υ(1)〉 = 〈0|(1 + Λ)ΘRΘ|0〉

=
∑
k �=0

〈0|(1 + Λ)ΘR̂k|0〉〈0|L̂kΘ|0〉
ωk

. (13.66)

In practice, the preferred representation of the resolvent operator is by
means of a set of excitations |h〉 that are orthogonal to the reference function
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〈0| instead of to 〈0|(1 + Λ). Such a resolvent involves the usual projector
Q̂ = 1 − P̂ = 1 − |0〉〈0| and takes the form

R = Q̂(E0 − H0)−1Q̂

= |h〉〈h|E0 − H0|h〉−1〈h| .
(13.67)

(Here 〈h| and |h〉 are column and row vectors, respectively.) The equations
for the perturbed wave function and energy become

|Υ(1)〉 = |h〉〈h|E0 − H0|h〉−1〈h|Θ|0〉 , (13.68)

providing a CI-like approximation,

E
(2)
CI = 〈0|(1 + Λ)

(
Θ − 〈Θ〉

)
h〉〈h|E0 − H0|h〉−1〈h|Θ|0〉. (13.69)

Note the appearance of 〈Θ〉 = E(1) in the E
(2)
CI equation; this term was

left out of (13.60) and (13.61) because of the intermediate normalization
condition, 〈0|(1 + Λ)|Υ〉 = 0, but must be included here because of the
change in orthogonality, 〈0|(1+Λ)|h〉 �= 0. A connected form of (13.69) can
be recovered if the space Q̂ of |h〉 spans fully the original Q space of the
EOM-CC excited states.

The form (13.69) (Stanton and Bartlett 1993b), referred to as the effective
Hamiltonian approximation, when truncated retains the 〈Θ〉 term, causing
this approximation to behave more like CI (Koch, Kobayashi, de Merás et al.
1994). The first-order function can be expressed as |Υ(1)〉 = |h〉t(1), where
t(1) is the column vector of T̂ (1) amplitudes and is obtained as the solution
to a set of linear equations

〈h|E0 − H0|h〉t(1) = θ , (13.70)

with θ = 〈h|Θ|0〉. These equations are solved using iterative strategies, as
in CI, to avoid matrix inversion. Then the second-order energy is obtained
in either of two forms:

E
(2)
CI = 〈0|(1 + Λ)

(
Θ − E(1)

)
|h〉t(1) (13.71)

E
(2)
lin = 〈0|(1 + Λ)Θ|h〉t(1) . (13.72)

The second, linear, form (13.72) is usually a very good approximation with
reasonable choices of |h〉 (Sekino and Bartlett 1999, Tam, Russ and Crawford
2004). Iterative solution of the linear equations (13.71) or (13.72) provides
a closed-form evaluation of the first-order wave function that is equivalent
to an SOS expression like (13.65). Including the quadratic correction adds
a double-commutator term, which is still linear but cannot be expressed in
SOS form. The various approximations, CI-like, linear and quadratic, have
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been compared for nuclear magnetic resonance coupling constants (Perera,
Nooijen and Bartlett 1996) and polarizabilities (Rozyczko, Perera, Nooijen
et al. 1997) and little numerical difference observed, so the comparative
ease of evaluation of the connected form of (13.72) recommends it for most
routine calculations (Sekino and Bartlett 1999).

One other form has been suggested (Sekino and Bartlett 1999). The
reason the linear form is not exactly extensive is that Λ itself has discon-
nected parts, though these are small for HF reference functions. Hence, a
slightly modified Λ equation can be solved that removes the disconnected
terms. This procedure (called Model III by Sekino and Bartlett) gives a fully
linked extensive expression, now termed EOM-CCL (Crawford and Sekino
2009). This model has been found to provide highly accurate approxima-
tions to the quadratic expression for circular dichroism, at a saving of ≈ 30%
in computation.

13.6 EOM-CC treatment of frequency-dependent properties

The EOM-CC approach is a time-independent method built upon stationary
states, aimed at determining the energy difference between two such states,
including states with different numbers of electrons, and their associated
wave functions. Properties of the stationary states can then be obtained
using the corresponding EOM-CC left and right eigenfunctions. Alterna-
tively, we can consider the time-dependent Schrödinger equation and ask
how a molecule responds to the imposition of a perturbing oscillating elec-
tric field, as would be used in a spectroscopy experiment. The molecule will
undergo an excitation when the imposed frequency is in resonance with the
transition frequency to another stationary state of the molecule. Instead of
a purely stationary-state description, this approach follows time-dependent
perturbation theory to obtain dynamic (frequency-dependent) properties,
such as frequency-dependent polarizabilities (Monkhorst 1977, Dalgaard and
Monkhorst 1983).

Consider the time-dependent Schrödinger equation,

Ĥ(t)Ψ(t) = i
∂

∂t
Ψ(t) , (13.73)

with the perturbed Hamiltonian

Ĥ(t, λ) = Ĥ0 + λΘ
(
eiωt + e−iωt)

= Ĥ0 + λV̂ (t) .
(13.74)
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The periodicity of the perturbation is given by

V̂ (t) = V̂ (t + mτ) (m = 0,±1,±2, . . .) , (13.75)

where τ = 2π/ω is the period. Static properties emerge in the limit ω → 0.
The unperturbed solution is |Ψ0〉 = eT̂0 |0〉, where |0〉 is the time-independent
Fermi-vacuum reference function. Thus, for the unperturbed state, we have

Ĥ0e
T̂0 |0〉 = E0e

T̂0 |0〉 , (13.76)

and projection onto 〈0|(1 + Λ)e−T̂0 results in

E0 = 〈0|(1 + Λ)e−T̂0Ĥ0e
T̂0 |0〉 = 〈0(1 + Λ)|H0|0〉 , (13.77)

where H0 = e−T̂0Ĥ0e
T̂0 is the form of the CC effective Hamiltonian used in

Section 13.5, satisfying

H0|0〉 = E0|0〉 . (13.78)

Under the effect of a periodic perturbation, the time-dependent wave func-
tion undergoes periodic oscillations,

Ψ(x, t, λ) = ψ(x, t, λ)e−iE(λ,t)t = eT̂ (t,λ)|0〉e−iE(λ,t)t . (13.79)

where x represents all the spatial and spin coordinates of the particles. This
wave function and its components, including the phase factor e−iE(λ,t)t, are
periodic in t. The time average of E(λ, t) over one period,

E(λ) =
1
τ

∫ τ

0
E(λ, t)dt , (13.80)

is called the quasienergy ; thus (13.79) becomes analogous to the time-
dependent wave function for a stationary state of energy E,

Ψ(x, t) = ψ(x)e−iEt , (13.81)

where Ĥψ(x) = Eψ(x).
Since all quantities are periodic in t, i.e. ψ(x, t, λ) = ψ(x, t + mτ, λ),

T (λ, t) = T (λ, t + mτ) etc., the analysis can be limited to the first period,
which is analogous to a Brillouin zone for a solid. The functions ψ(x, t) are
defined in an extended Hilbert space x ⊕ t with scalar product

〈〈a(x, t)|b(x, t)〉〉 =
1
τ

∫ τ

0
〈a(x, t)|b(x, t)〉dt =

1
τ

∫ τ

0
dt

∫
dx a∗(x, t)b(x, t) .

(13.82)
Also, ψ0(x, t) = ψ0(x)e−E0t, in which ψ0(x) = eT̂0 |0〉 is the stationary
ground state.
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Various approaches can be used for time-dependent perturbation theory
(Langhoff, Epstein and Karplus 1972, Sambe 1973, Christiansen, Jørgensen
and Hättig 1998). Perhaps the simplest approach is to recognize that all
relevant quantities have an oscillatory behavior, which enables them to be
described by a finite Fourier series, the terms of which can simply be col-
lected in multiples of eikωt and in which the phase factor can then be elim-
inated to provide equations largely analogous to those of time-independent
perturbation theory for each order.

The time derivative of the time-dependent wave function (13.79) is

i
∂

∂t
Ψ(x, t, λ) = e−iE(λ,t)t

{ ∂

∂t

[
E(λ, t)t

]
+ i

∂

∂t

}
ψ(x, t, λ) . (13.83)

Substituting in the time-dependent Schrödinger equation (13.73) with the
perturbed Hamiltonian (13.74) results in

[
Ĥ0 + λV̂ (t)

]
ψ(x, t, λ)e−iE(t,λ)t = e−iE(λ,t)t

{ ∂

∂t

[
E(λ, t)t

]
+ i

∂

∂t

}
ψ(x, t, λ) ,

(13.84)
which, after elimination of the phase factor, leads to

[H0 + λV (t)]ψ(x, t, λ) =
[
DE(λ, t)

]
ψ(x, t, λ) , (13.85)

where

D = 1 + t
∂

∂t
(13.86)

and

H0 = Ĥ0 − i
∂

∂t
. (13.87)

The energy and wave function are expanded in orders of the external
perturbation,

E(λ, t) = E0 + λE(1)(t) + λ2E(2)(t) + · · · , (13.88)

ψ(x, t, λ) = ψ(0)(x) + λψ(1)(x,t) + λ2ψ(2)(x, t) + · · · , (13.89)

where ψ(0)(x) = eT̂0 |0〉. To separate the time dependence from the spatial
dependence, we invoke a Fourier expansion in the former,

ψ(n)(x, t) =
∑

k

ψ
(n)
k (x)eikωt (k = −n,−n + 2, . . . , n) . (13.90)

The spacing of k by 2 reflects a cosine choice for the Fourier expansion. The
limits −n ≤ k ≤ n are a consequence of the fact that no terms higher than
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order n contribute to the nth order wave function. In particular, for the
first and second orders,

ψ(1)(x, t) = ψ
(1)
+1(x)eiωt + ψ

(1)
−1(x)e−iωt , (13.91)

ψ(2)(x, t) = ψ
(2)
0 (x) + ψ

(2)
+2(x)e2iωt + ψ

(2)
−2(x)e−2iωt (13.92)

etc.
Application of the standard perturbation-theory methods leads to inho-

mogeneous equations analogous to those of the time-independent case,

(E0 − Ĥ0)ψ(0)(x) = 0 , (13.93)

(E0 − H0)ψ(1)(x, t) =
[
V̂ (x, t) −DE(1)(t)

]
ψ(0)(x) , (13.94)

(E0 − H0)ψ(2)(x, t) =
[
V̂ (x, t) −DE(1)(t)

]
ψ(1)(x, t) −

[
DE(2)(t)

]
ψ(0)(x)

(13.95)
etc. Inserting the Fourier expansion of the first-order wave function into the
first-order equation results in

(E0 − Ĥ0 − ω)|ψ(1)
+1(x)〉e+iωt + (E0 − Ĥ0 + ω)|ψ(1)

−1(x)〉e−iωt

=
[
Θ(eiωt + e−iωt) −DE(1)(t)

]
eT̂0 |0〉 . (13.96)

Left-multiplying by 〈ψ0(x)| = 〈0|(1 + Λ)e−T̂0 eliminates the l.h.s. (because
of intermediate normalization) and results in

DE(1)(t) = 〈ψ(0)|Θ|ψ(0)〉(eiωt + e−iωt)

= 〈0|(1 + Λ)Θ|0〉(eiωt + e−iωt) = E(1)(eiωt + e−iωt) ,
(13.97)

where Θ = eT̂0ΘeT̂0 . Here E(1) is the usual static first-order term. The time
average of (13.97) over one period is zero,

〈
DE(1)(t)

〉
=

1
τ

∫ τ

0
E(1)(eiωt + e−iωt)dt = 0 . (13.98)

Inserting (13.97) into the first-order equation (13.94) results in

(E0 − H0)ψ(1)(x, t) =
[
V̂ (x, t) − E(1)(eiωt + e−iωt)

]
ψ(0)(x) . (13.99)

Just as in the time-independent case, the perturbed CC solutions are

|ψ(1)(x, t)〉 = T̂ (1)(t)eT̂0 |0〉 , (13.100)

|ψ(2)(x, t)〉 =
{

T̂ (2)(t) +
[
T̂ (1)(t)

]2
}

eT̂0 |0〉 (13.101)



458 The equation-of-motion coupled-cluster method

etc. and their Fourier components are given by

T̂ (1)(t)|0〉 =
(
T̂

(1)
+1 eiωt + T̂

(1)
−1 e−iωt

)
|0〉 (13.102)

T̂ (2)(t)|0〉 =
(
T̂

(2)
0 + T̂

(2)
+2 e2iωt + T̂

(2)
−2 e−2iωt

)
|0〉 (13.103)

etc. Left-multiplication by e−T̂0 , using H0 = e−T̂0Ĥ0e
T̂0 and

V (t) = e−T̂0 V̂ (t)eT̂0 = Θ(eiωt + e−iωt) , (13.104)

puts the first-order perturbed equations (13.99) into the form(
E0 − H0 ∓ ω

)
T̂

(1)
± |0〉e±iωt =

(
Θ − 〈Θ〉

)
|0〉e±iωt , (13.105)

where the designation ± indicates the sign of ω. Since this equation is true
for all values of ω the factor e±iωt can be eliminated, providing the analogs
of the time-independent equations, which are modified only by the presence
of ω: (

E0 − H0 ∓ ω
)
T̂

(1)
± |0〉 =

(
Θ − 〈Θ〉

)
|0〉 . (13.106)

Finally, projection by a set of determinants 〈h| sufficient to determine
the vector of coefficients in T̂

(1)
± , i.e. t(1)

+ (ω) = t(1)
− (−ω) = t(1) = 〈h|T̂ (1)

+ |0〉
(note that these are the same for positive and negative frequencies), gives(

E01 − H0 + ω1
)
t(1) = θ , (13.107)

with H0 = 〈h|H0|h〉 and θ = 〈h|Θ|0〉. The homogeneous part of this linear
equation provides the poles. Using ωk to specify the position of the kth pole
relative to E0, we have

H0t
(1)
k = ωkt

(1)
k (13.108)

for each transition with which the radiation can be in resonance. This result
is equivalent to the EOM-CC expression (13.20), H0 and tk representing H
and R̂k|0〉, respectively.

For the perturbed first-order wave function we find

T
(1)
±1 |0〉 = R(±ω)Θ|0〉 (13.109)

where R(±ω) = Q̂(E0 −H0 ±ω)−1Q̂, with Q̂ = 1− P̂ = 1− |0〉〈0|. This re-
solvent is nonsingular provided that the reference function is nondegenerate
and ω �= 0.

Continuing to the next order of perturbation theory, we can define the
frequency-dependent (dynamic) polarizability. In second order we need to
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consider all three Fourier components leading to T̂
(2)
0 , T̂

(2)
+2 , and T̂

(2)
−2 . For

this purpose it is convenient to express the V̂ (t) operator as

V̂ (t) = Θ+eiωt + Θ−e−iωt , (13.110)

even though Θ+ = Θ−. (More general situations can be accommodated by
keeping these two terms separate from the outset.) Hence, after collecting
factors of e±2iωt and e0 = 1,

(
E0 − H0 − 2ω

)[
T̂

(2)
+2 +

(
T̂

(1)
+1

)2
]
|0〉e+2iωt −

(
Θ+ − 〈 Θ+〉

)
T

(1)
+1 |0〉e+2iωt

= −DE(2)(t)|0〉 , (13.111)

(
E0 − H0 + 2ω

)[
T̂

(2)
−2 +

(
T̂

(1)
−1

)2
]
|0〉e−2iωt −

(
Θ− − 〈 Θ−〉

)
T

(1)
−1 |0〉e−2iωt

= −DE(2)(t)|0〉 , (13.112)

(
E0−H0

)(
T̂

(2)
0 +2T̂

(1)
+1 T̂

(1)
−1

)
|0〉−

(
Θ+−〈Θ+〉

)
T̂

(1)
−1 |0〉−

(
Θ−−〈Θ−〉

)
T̂

(1)
+1 |0〉

= −DE(2)(t)|0〉 . (13.113)

Left-multiplication by 〈0|(1 + Λ) = 〈0|L̂0 eliminates the T̂ (2) operators be-
cause of the biorthogonality of the EOM-CC eigenfunctions, but it does
not eliminate the T̂ (1)T̂ (1) terms, as previously discussed for the static case.
While 〈0|L̂0 is a left eigenfunction of H0, if 〈0|Λ is limited to categories of
excitations in 〈h| such as singles and doubles then the products T̂ (1)T̂ (1)

can introduce triple and quadruple excitations that are not involved in the
determination of Λ. Therefore the quadratic term should be retained in the
expression for the energy derivative,

DE(2)(t) = 〈0|L̂0

(
Θ+ − 〈Θ+〉

)
T̂

(1)
−1 |0〉 + 〈0|L̂0

(
Θ− − 〈Θ−〉

)
T̂

(1)
+1 |0〉

− 2〈0|L̂0(E0 − H0)T̂
(1)
+1 T̂

(1)
−1 |0〉 . (13.114)

The second-order frequency-dependent energy can be obtained by time-
averaging the energy derivative over one period. The terms involving e±2iωt
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integrate to zero and leave just the time-independent terms:

E(2)(ω,−ω) =
〈
DE(2)

〉
= 〈0|L̂0

(
Θ+ − 〈Θ+〉

)
T̂

(1)
−1 |0〉 + 〈0|L̂0

(
Θ− − 〈Θ−〉

)
T̂

(1)
+1 |0〉

− 2〈0|L̂0(E0 − H0)T̂
(1)
+1 T̂

(1)
−1 |0〉

=
〈
0
∣∣L̂0

(
Θ+ − 〈Θ+〉

)
R(−ω)Θ−

∣∣0〉
+

〈
0
∣∣L̂0

(
Θ− −

〈
Θ−

〉)
R(+ω)Θ+

∣∣0〉
−

〈
0
∣∣L̂0(E0 − H0)T̂

(1)
+1R(−ω)Θ−

∣∣0〉
−

〈
0
∣∣L̂0

(
E0 − H0)T̂

(1)
−1R(+ω)Θ−

∣∣0〉
. (13.115)

The dynamic polarizability, α(ω,−ω) = −2E(2)(ω,−ω), is obtained when
Θ =

∑
µ qµ�rµ.

An alternative choice for the resolvent R′(±ω) is in terms of the EOM-
CC left and right eigenfunctions of the non-Hermitian Hamiltonian H0. The
spectral expansion of this resolvent is

R′(ω) + R′(−ω) =
∑

k

(
R̂k|0〉〈0|L̂k

ωk + ω
+

R̂k|0〉〈0|L̂k

ωk − ω

)
. (13.116)

Then

α(ω,−ω) = 2〈L̂0|ΘR′(ω)Θ|R̂0〉 + 〈L̂0|ΘR′(−ω)Θ|R̂0〉

− 〈L̂0|(E0 − H0)T̂
(1)
−1R′(+ω)Θ−|R̂0〉

− 〈L̂0|(E0 − H0)T̂
(1)
+1R′(−ω)Θ−|R̂0〉 . (13.117)

If we neglect the last two terms in (13.115), we obtain the time-dependent
analog of the EOM CI-like approximation (13.66) (Stanton and Bartlett
1993b, Rozyczko, Perera, Nooijen et al. 1997) discussed in Section 13.5.
This approximation treats H0 as completely defined by its left and right
eigenvectors, instead of explicitly introducing the expansion of eT̂0 into the
second-order perturbed wave function, and leads to the textbook sum-over-
states expression,

α�r�r(ω,−ω) = 2
∑
l=0,1

∑
k

〈0|L̂0�rR̂k|0〉〈0|L̂k�rR̂0|0〉
ωk + (−1)lω

. (13.118)

The numerator in this expression contains the left and right transition mo-
ments, whose products (the dipole strengths) are the residues at the poles.

If instead we first use the fully connected form, analogous to (13.61),
in which all terms correspond to connected diagrams and then make the
same approximation as in the static case, we regain the linearized connected
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approximation that retains the SOS form for the dynamic polarizability.
As also discussed in Section 13.5, retaining the last two terms of (13.117)
gives the benefit that the full exponential expansion can be used, but this
is at the cost of a more difficult evaluation. The result is a time-dependent
analog of the connected approximation (13.72) (Sekino and Bartlett 1999).
The numerical differences between these approximations are very small for
most applications, including the frequency-dependent polarizabilities (Rozy-
czko, Perera, Nooijen et al. 1997). When the quadratic terms are included
there are also slight changes to the values of the dipole strengths (Koch,
Kobayashi, de Merás et al. 1994, Sekino and Bartlett 1999), though the
right-hand transition moment in this approximation is linked, extensive and
intensive (Sekino and Bartlett 1999).
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Multireference coupled-cluster methods

14.1 Introduction

As in the case of quasidegenerate perturbation theory (Chapter 8), mul-
tireference coupled-cluster (MRCC) theory is designed to deal with elec-
tronic states for which a zero-order description in terms of a single Slater
determinant does not provide an adequate starting point for calculating the
electron correlation effects. As already discussed in Chapters 8 and 13,
these situations arise primarily for certain open-shell systems that are not
adequately described by a high-spin single determinant (such as transition-
metal atoms), for excited states in general and for studies of bond breaking
on potential-energy surfaces; they arise usually because of the degeneracy
or quasidegeneracy of the reference determinants. While single-reference
coupled-cluster (SRCC) methods are very effective in treating dynamic elec-
tron correlation, the conditions discussed here involve nondynamic correla-
tion effects that are not described well by truncated SRCC at practical levels
of treatment.

As shown in Section 13.4, many open-shell and multireference states can
be treated by EOM-CC methods, including a single excitation from a closed-
shell state to an open-shell singlet state, which normally requires two equally
weighted determinants in its zero-order description. Furthermore, double-
ionization and double-electron-attachment EOM-CC, as well as spin-flip CC
(Krylov 2001), allow the treatment of many inherently multireference tar-
get states. These methods have the advantage of being operationally of
single-reference form, since then the only choices that need to be made
are of the basis set and the level of correlation treatment. Although, they
require an SRCC solution for an initial state (not necessarily the ground
state) to initiate the procedure, once initiated multireference target states
are available by the diagonalization of an effective Hamiltonian matrix in
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a determinantal representation. As in the case of perturbation theory, the
multireference approach is the most general and natural way to extend the
reach of high-accuracy electronic-structure calculations.

The methods employed in MRCC are a combination of the techniques of
QDPT (Chapter 8) and SRCC (Chapters 9 and 10). They fall into two main
classes: Hilbert-space MRCC (HS-CC, usually in the form of state-universal
CC , or SU-CC), and Fock-space CC (FS-CC, also called valence-universal
MRCC, or VU-CC). Hilbert-space MRCC also has a state-specific (SS-CC)
version designed so as to obtain a single solution based on a multirefer-
ence zero-order function; this is analogous to multireference CI (MRCI)
but includes proper factorization of the disconnected clusters and leads
to extensive solutions. Fock-space MRCC also has an additional version,
intermediate-Hamiltonian MRCC (IH-CC). The differences between these
approaches will be discussed in the following sections. In each case, the
methods can be based either on complete model spaces (which are often too
large for practical applications and also suffer from intruder-state problems)
or on incomplete model spaces (which introduce some complications and
may result in some loss of extensivity).

All multireference methods, including QDPT and MRCC, are based on
the generalized Bloch equation

[Ω, Ĥ0]P̂ = V̂ ΩP̂ − ΩP̂ V̂ ΩP̂ . (14.1)

As in QDPT, the projection operator P̂ projects onto a model space spanned
by a set of model functions Φα,

P̂ =
∑
α

|Φα〉〈Φα| =
∑
α

P̂α , P̂α = |Φα〉〈Φα| , (14.2)

and Ω = ΩP̂ is the wave operator, which, when operating on the model
space, produces the space spanned by the perturbed wave functions,

Ψα = ΩΦα = ΩP̂Φα . (14.3)

With intermediate normalization, Ω is split into two components:

Ω = P̂ + Q̂Ω , (14.4)

where

Q̂ = 1̂ − P̂ =
∑

I

|ΦI〉〈ΦI | =
∑

I

Q̂I , Q̂I = |ΦI〉〈ΦI | , (14.5)

is the projector onto the orthogonal (or complementary) space, i.e. the space
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spanned by all the functions ΦI that are not in the model space. From (14.3)
and (14.4) it follows that

P̂Ψα = Φα . (14.6)

Another common form of the generalized Bloch equation can be obtained
by rearranging the terms in (14.1) and using Ĥ0 + V̂ = Ĥ, at the same time
noting that P̂Ω = P̂ as can be seen from (14.4). The result is

ĤΩ = Ω
(
Ĥ0P̂ + V̂ Ω

)
= Ω

(
Ĥ0 + V̂

)
Ω

or

ĤΩ = ΩĤΩ . (14.7)

This form is more convenient for MRCC because, unlike QDPT, it does not
involve an order-by-order expansion but is generally formulated in terms of
the full Hamiltonian. As in all coupled-cluster methods, instead of an order-
by-order expansion of the wave operator Ω we express it in exponential form,

Ω = eT̂ , (14.8)

and expand T̂ into different excitation levels. The details of this expansion
and of the treatment of the model space will differ between the two classes
of MRCC methods, HS-CC and FS-CC.

As discussed in Section 8.1, the functions Ψα, (14.3), are not individually
eigenfunctions of Ĥ but span the space of eigenfunctions Ψ̃α for which the
model space forms a zero-order approximation, i.e.

Ψ̃α =
∑

β

ΨβCβα

=
∑

β

ΩΦβCβα = ΩΦ̃α ,
(14.9)

where

Φ̃α =
∑
β

ΦβCβα (14.10)

are the bonnes fonctions (Bloch 1958) already discussed in Section 8.1. In
analogy with the case of QDPT, the weights (transformation coefficients)
Cβα are obtained by diagonalization of an effective Hamiltonian, as shown
by substituting these expansions into the Schrödinger equation

ĤΨ̃α = EαΨ̃α . (14.11)
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Applying P̂ from the left, we get the matrix eigenvalue equation

P̂ ĤΩΦ̃α = EαΦ̃α , (14.12)

from which the transformation matrix C can be determined.
The operator

Ĥeff = P̂ ĤΩ , (14.13)

which operates entirely in P̂ -space and whose eigenfunctions and eigenval-
ues are Φ̃α and Eα, respectively, is called the effective Hamiltonian operator .
The notation Ĥeff is used here, as in Chapter 8, to distinguish it from the
coupled-cluster effective Hamiltonian H of Chapters 10–13. With this nota-
tion, the generalized Bloch equation (14.7) can be written in the form

ĤΩ = ΩĤeff . (14.14)

Once the Bloch equation is satisfied, we can obtain another expression for
Ĥeff by operating with Ω−1 on (14.14),

Ĥeff = Ω−1ĤΩ . (14.15)

14.2 Hilbert-space state-universal MRCC

The Hilbert-space approach to multireference coupled-cluster (MRCC) the-
ory assumes a separate Fermi-vacuum definition, and thus a separate par-
tition of the spinorbitals into hole and particle states, for each model-space
determinant (Jeziorski and Monkhorst 1981). In this respect it resembles
the Hose–Kaldor approach to incomplete-model-space QDPT (Section 8.7
and Fig. 8.8) but can be applied to both complete and incomplete model
spaces.

Following the Ansatz of Jeziorski and Monkhorst, the wave operator is
separated into individual wave operators for the different model states,

Ω =
∑
α

Ωα =
∑
α

eT̂ α
P̂α , (14.16)

where

T̂α = T̂α
1 + T̂α

2 + · · ·

=
∑
ia

′
tai (α)â†î +

∑
ijab

′
tab
ij (α)â†b̂†ĵ î + · · · . (14.17)

In the last expression the primes on the summation signs indicate the exclu-
sion of internal excitations (excitations that result in model-space
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determinants), and tai (α), tab
ij (α) etc. are amplitudes; it is to be remem-

bered that the definitions of particle and hole states are different for each
model state.

The exclusion of internal excitations in (14.17) is not an approxima-
tion, provided that the model space is complete. However, as discussed
in Chapter 8, complete model spaces are usually impractical because of
their size and because of intruder-state problems and so treatments using
incomplete model spaces (IMS), also called general model spaces (GMSs),
are much more desirable. As shown by Li and Paldus (2003a), the exclusion
of internal excitations from the cluster operators T̂α is not valid for incom-
plete model spaces. If we expand the wave operator Ωα in a CI-like series
(compare (1.8)),

Ωα =
(
1 + Ĉα

1 + Ĉα
2 + · · ·

)
P̂α (14.18)

where Ĉα
n is a linear combination of n-fold excitation operators on Φα, then

(14.2) and Ω = ΩP̂ require the exclusion of internal excitations from each
Ĉα

n . But this exclusion is not equivalent to the exclusion of such excitations
from T̂α

n because, expanding eT̂ α
in its power series, we find that the exact

(full CI) expansion must satisfy

Ĉα
2 = 1

2(T̂α
1 )2 + T̂α

2 ,

Ĉα
3 = 1

3!(T̂
α
1 )3 + T̂α

1 T̂α
2 + T̂α

3 etc.
(14.19)

When the model space is complete, any term in T̂α
n that generates a model-

space function is accompanied in (14.19) by disconnected-cluster terms gen-
erating the same model function, expressed as products of lower-order ex-
citations each of which also generates a model-state function. In this case
the exclusion of internal excitations from T̂α is equivalent to their exclusion
from Ωα. But when the model space is incomplete some lower excitations
in the above disconnected-cluster terms can generate Q̂-space functions, so
that the relevant connected-cluster amplitudes cannot be set to zero with-
out introducing approximations. Thus, instead of excluding all internal ex-
citations from T̂α

n such operators must be retained, their amplitudes being
determined by the requirement that the corresponding terms in Ĉα

n have
zero amplitude in (14.19). For example, if the operator â†b̂†ĵ î generates a
model-space function when operating on Φα, the amplitude of the function
is given by

tab
ij (α) = −[tai (α)tbj(α) − taj (α)tbi(α)] , (14.20)

which would be nonzero if â†î and b̂†ĵ and/or â†ĵ and b̂†î are external exci-
tations. These requirements, which were termed the connectivity conditions
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(or C-conditions) by Li and Paldus, can be represented compactly in dia-
grammatic form. For an excitation from internal state Φα to an internal
state Φβ that differs from it by a single, double, triple, . . . excitation, re-
spectively, its amplitude must satisfy

β

= 0 , (14.21)

β

+

β

= 0 , (14.22)

β

+

β

+

β

= 0 (14.23)

etc., where the diagrams are in the Φα representation and the box at the top
indicates the final state Φβ . The disconnected diagrams in these equations
implicitly include all distinct permutations of their labels, e.g.

β

= u x v y − u y v x, (14.24)

where |Φβ〉 = |Φxy
uv(α)〉 = x̂†ûŷ†v̂|Φα〉. All these diagrams involve only the

spinorbitals that are occupied in one, but not both, of the two internal states.
Such spinorbitals were called local active spinorbitals by Li and Paldus, in
analogy with the valence orbitals in a “local” version of the classification
of the spinorbital space used in the incomplete-model-space perturbation
theory, Section 8.7 (see Fig. 8.8); however, they are defined by just the two
model states involved in the matrix element. The limitation on the spinor-
bital labels is indicated by the bars and double arrows in these diagrams, in
analogy with the notation in Section 8.7.

The C-conditions indirectly introduce some disconnected-cluster contri-
butions into the MRCC equations, in analogy with such contributions in
incomplete-model-space MRPT (subsection 8.7.1). Most importantly, en-
forcing the C-conditions ensures the extensivity of the MRCC energy when
the T̂ operators are truncated consistently at any excitation level.
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Substituting the definition of the wave operator (14.16), the generalized
Bloch equation (14.14) may be written in the form∑

β

ĤeT̂ β
P̂β =

∑
β

eT̂ β
P̂βĤeffP̂ . (14.25)

Projecting on the left with e−T̂ α
and on the right with P̂α we obtain

e−T̂ α
ĤeT̂ α

P̂α =
∑

β

e−T̂ α
eT̂ β

P̂βĤeffP̂α . (14.26)

Applying an external-space determinant 〈Φab...
ij... (α)| = 〈â†îb̂†ĵ · · ·Φα| on the

left and the model function |Φα〉 on the right, we obtain equations for the
external-excitation amplitudes tab...

ij... (α) contained in the operators T̂α:

〈Φab...
ij... (α)|e−T̂ α

ĤeT̂ α |Φα〉 =
∑

β

〈Φab...
ij... (α)|e−T̂ α

eT̂ β |Φβ〉〈Φβ |Ĥeff|Φα〉 .

(14.27)

The matrix elements of the effective Hamiltonian Ĥeff appearing in this
equation are obtained, using (14.13) and (14.16), as

Heff
βα = 〈Φβ |Ĥeff|Φα〉 = 〈Φβ |ĤΩ|Φα〉 = 〈Φβ |ĤeT̂ α |Φα〉 . (14.28)

For the use of diagrammatic techniques, the Hamiltonian Ĥ on the l.h.s. of
(14.27) can be replaced by

Ĥα
N = Ĥ − 〈Φα|Ĥ|Φα〉 , (14.29)

where normal order is defined relative to Φα as the Fermi vacuum, since the
the constant term does not contribute to the matrix element. We can then
use the CC effective Hamiltonian (the similarity-transformed Hamiltonian)
for model state Φα,

Hα = e−T̂ α
ĤeT̂ α

=
(
ĤeT̂ α)

C
. (14.30)

The internal-excitation amplitudes in T̂α are determined by the C-conditions,
while the equations for the external-excitation amplitudes take the form

〈Φab...
ij... (α)|Hα|Φα〉 =

∑
β

〈Φab...
ij... (α)|e−T̂ α

eT̂ β |Φβ〉Heff
βα . (14.31)

The diagrammatic techniques of single-reference CC (Chapter 10) can
be used for the left-hand side of these equations, but the equations dif-
fer from those of single-reference CC in two respects. A minor difference
is the distinction between the treatment of internal and external excita-
tions (relative to the model space). A major difference is the appearance
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of the coupling term on the right-hand side. Because of this coupling the
equations are solved iteratively, cycling through the different model-state
equations using current approximate values for the amplitudes on the r.h.s.
and updating these amplitudes with new values as they become available,
until self-consistency is achieved between the input and output amplitudes.

We now consider in more detail the evaluation of the various matrix ele-
ments that appear in (14.28) and (14.31), following the analysis of Li and
Paldus (2003a). For the diagonal elements of Ĥeff we note that 〈Φα|T̂α = 0,
so that

〈Φα|e−T̂ α
= 〈Φα|(1 − T̂α + · · · ) = 〈Φα| (14.32)

and therefore

Heff
αα = 〈Φα|e−T̂ α

ĤeT̂ α |Φα〉 = 〈Φα|Hα|Φα〉 . (14.33)

Thus we can use the diagrammatic formulas of single-reference CC to calcu-
late these elements, with the minor difference that the internal excitations
are omitted from T̂α.

Considering now the off-diagonal elements of (14.28), 〈Φβ |T̂α does not
necessarily vanish unless the model space is complete and therefore the in-
sertion of e−T̂ α

in (14.28) may not be justified for incomplete model spaces.
Instead, we insert eT̂ α

e−T̂ α
= 1 and obtain

Heff
βα = 〈Φβ |eT̂ αHα|Φα〉 . (14.34)

The only excitations in T̂α that can contribute to 〈Φβ |eT̂ α
involve local

active spinorbitals. For typical incomplete model spaces the number of such
excitations is quite small and a series expansion of eT̂ α

will then include
just a few contributing terms, allowing easy diagrammatic evaluation of a
matrix element.

When the model state Φβ represents a single excitation relative to Φα we
obtain

Heff
βα =

β

+

β

× Heff
αα . (14.35)

The second term, which is unlinked (since Heff
αα is a closed disconnected

part), vanishes because it involves amplitudes for internal single excitations,
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(14.21). For a double excitation we get

Heff
βα =

β

+
β

+




β

+
β


 × Heff

αα . (14.36)

The sum in the parentheses vanishes when the C-conditions are satisfied,
(14.22), eliminating the unlinked term. The single-excitation amplitudes in
the second and third term are not necessarily zero, except in the complete-
model-space case, because they may correspond to external excitations indi-
vidually and only lead to the internal state Φβ in the indicated combinations.

Similarly, for a triple excitation we have

Heff
βα =

β

+
β

+
β

+
β

+




β

+
β

+
β


 × Heff

αα ,

(14.37)

where the unlinked terms vanish when the C-conditions are satisfied. As
stated above, the labels on the lines in the diagrams for 〈Φβ |Ĥeff|Φα〉 are
restricted to local active spinorbitals. Furthermore, when the model space
is complete all diagrams that include T̂ vertices vanish, leaving only the first
diagram for each matrix element.

Next we consider the first factor in the sum on the r.h.s. of (14.31),

Sab...
ij... (α, β) = 〈Φab...

ij... (α)|e−T̂ α
eT̂ β |Φβ〉

= 〈Φab...
ij... (α)|e−T̂ α

eT̂ β |Φxy...
uv...(α)〉 ,

(14.38)

where |Φβ〉 = Φxy...
uv...(α)〉. Inserting a resolution of the identity between the

two exponentials, we obtain

Sab...
ij... (α, β) =

∑
I

〈Φab...
ij... (α)|e−T̂ α |ΦI〉〈ΦI |eT̂ β |Φxy...

uv...(α)〉 . (14.39)

The series expansions of the exponentials in this equation result in expres-
sions, involving CI-like amplitudes, corresponding to linear combinations of
T̂ amplitudes and their products; these are analogous to the expressions
(14.21)–(14.23) involving the C-conditions but they also contain excitations
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Table 14.1. State-universal MRCC excitation energies, in eV, for 1,3A1

states of the water moleculea

SU model-space dimension

State Excitation CIb 3 6 10

1A1 gd. statec −0.241833 −0.238073 −0.238149 −0.238252
3A1 3a1 → 4a1 9.431 9.457 9.456 9.425
1A1 3a1 → 4a1 10.363 10.364 10.356 10.367
3A1 1b1 → 2b1 15.475 15.550 15.554
1A1 1b1 → 2b1 17.884 17.964 17.937
1A1 1b2

2 → 4a2
1 20.588 20.669 20.467

3A1 3a1 → 5a1 23.253 23.459
1A1 3a1 → 5a1 24.414 24.590
1A1 3a2

1 → 4a2
1 24.928 25.152

1A1 1b2
2 → 2b2

1 26.756 26.854

aLi and Paldus (2004); SU-MRCCSD in a cc-pVDZ basis.
bSingle-reference CISDTQP (single to five-fold excitations).
cGround-state energies as E + 76 in Eh.

outside the model space. The diagrammatic representation and the evalu-
ation of this expansion are described in detail by Paldus, Li and Petraco
(2004); see also Kucharski and Bartlett (1991b) for the explicit equations,
which will not be discussed further here.

Several applications of Hilbert-space SU-MRCCSD were discussed by Li
and Paldus (2003c, 2004), who compared model spaces of different dimen-
sions with high-excitation single-reference CI. As an example we show in
Table 14.1 some of their results for several 1,3A1 states of the water molecule.
Additional results and comparisons with those obtained using various dif-
ferent methods can be found in the review by Bartlett and Musia�l (2007).

14.3 Hilbert-space state-specific MRCC

The salient feature of the state-universal form of Hilbert-space MRCC is the
simultaneous treatment of several electronic states (equal in number to the
dimension of the model space) on an equal footing. This approach is most
appropriate for cases of exact degeneracy of the model functions, as in the
case of many open-shell states, and to some extent to cases of close quaside-
generacy. But, for most problems in electronic structure theory for which a
multireference treatment is indicated, we are usually interested in just one
electronic state, and the simultaneous computation of a number of states on
an equal footing is an undesirable burden. An example of such a case is the
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calculation of potential-energy surfaces (PESs), which often involve near de-
generacy in some geometries but are far from quasidegenerate in most other
geometries. A state-universal treatment of such potential-energy surfaces
is bound to introduce intruder-state problems for some geometries, as the
determinantal basis states (both model states and external states) change
their relative energy positions and order in different regions of the PES.

Even when we are interested in a few electronic states at a time, their
number may be smaller than the desired dimension of the model space. Li
and Paldus (2003b) proposed a generalization of SU-CC for this type of
situation. In this section we shall focus on state-specific MRCC, in which
just one electronic state is computed using a multidimensional model space.
We shall follow the general approach of Mukherjee and co-workers (Maha-
patra, Datta and Mukherjee 1998, 1999, Chattopadhyay, Mahapatra and
Mukherjee 1999).

State-specific MRCC is intended to provide a CC equivalent of multiref-
erence CI in generating a single electronic-state solution from a multideter-
minantal model space but, unlike MRCC, it benefits from the linked nature
of the CC theory and, owing to the exponential nature of the wave oper-
ator, includes higher excitations obtained as disconnected clusters of lower
excitations. The MRCI wave-function expansion is generated from a set
of reference determinants (or spin-adapted linear combinations of determi-
nants, called configuration state functions) similar to the model space in
MRCC, to which are added all excitations of specified levels (usually just
single and double excitations, MRCISD) from the reference determinants.
The Hamiltonian matrix in the basis of all these determinants is constructed,
usually implicitly (“direct CI”), and the desired eigenstate obtained. In CC
theory, as usual, the eigenvalue problem is replaced by a set of simultaneous
equations.

The desired SS-CC wave function Ψ̃α for the electronic state α is obtained
by the operation of a wave operator Ω on a linear combination Φ̃α of model
functions Φα,

|Ψ̃α〉 = Ω|Φ̃α〉 , (14.40)

|Φ̃α〉 = P̂ |Ψ̃α〉 , (14.41)

where P̂ is the projector onto the model space. Typically, the reference
P̂ -space will consist of several determinants {Φβ} containing all the in-
active core orbitals plus various sets of active orbitals, and the Φ̃α are lin-
ear combinations (the bonnes fonctions) of these model determinants, as in
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(14.9), (14.10); the coefficients of the linear combination are obtained as the
components Cβα of the appropriate eigenvector cα of the Heff matrix.

Inserting the Jeziorksi–Monkhorst Ansatz (14.16) for Ω into (14.40), we
obtain

|Ψ̃α〉 = Ω|Φ̃α〉 =
∑
β

eT̂ β |Φβ〉〈Φβ |Φ̃α〉 =
∑

β

eT̂ β |Φβ〉Cβα . (14.42)

A complication arises in this procedure due to the fact that, unlike the case
of SU-CC, the wave operator Ω operates directly on a linear combination of
model determinants and may generate the same Q̂-space functions from its
operation on different model determinants, giving rise to redundancy and
non-uniqueness in the formalism. It is therefore necessary to omit the redun-
dant Q̂-space functions from the expansions or to invoke a set of sufficiency
conditions (Mahapatra, Datta and Mukherjee 1999).

When the wave function (14.42) is substituted into the Schrödinger equa-
tion we obtain ∑

β

[
ĤeT̂ β |Φβ〉Cβα − EαeT̂ β |Φβ〉Cβα

]
= 0 . (14.43)

In order to introduce the connected-cluster operator e−T̂ β
ĤeT̂ β

= Hβ , we
insert the identity 1 = eT̂ β

e−T̂ β
= eT̂ β

(P̂ + Q̂)e−T̂ β
, noting that P̂ =∑

γ |Φγ〉〈Φγ |, to obtain∑
βγ

eT̂ β |Φγ〉Heff
γβCβα +

∑
β

eT̂ β
Q̂Hβ|Φβ〉Cβα − Eα

∑
β

eT̂ β |Φβ〉Cβα = 0 ,

(14.44)
where, in matrix form,

Heff = 〈Φ|ĤΩ|Φ〉 =
〈
Φ

∣∣∣∣Ĥ ∑
β

eT̂ β

∣∣∣∣Φ
〉

(14.45)

and Φ is a vector composed of the model-space determinants {Φβ}. Ex-
changing the dummy summation variables β and γ in the first term of (14.44)
leads to

∑
β

[∑
γ

eT̂ γ |Φβ〉Heff
βγCγα + eT̂ β

QHβ |Φβ〉Cβα − EαeT̂ β |Φβ〉Cβα

]
= 0 .

(14.46)

The redundancy in the determinants is taken into account for each β by
setting the corresponding terms in the β-sum to zero.
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To obtain the amplitudes we multiply this Schrödinger equation on the
left by e−T̂ β

and project onto the Q̂-space determinants, obtaining

∑
γ(�=β)

〈Φab..
ij.. (β)|e−T̂ β

eT̂ γ |Φβ〉Ĥeff
βγCγα + 〈Φab...

ij... (β)|Hβ |Φβ〉Cβα = 0 (for all β).

(14.47)

Thus we obtain a single solution for state α. The coefficients Cβα are ob-
tained as the components of the appropriate eigenvector cα of Heff, (14.45).
Except for the cα vector, this equation is similar to a form of the SU-CC
equation partitioned to separate one state from all the others.

Detailed discussions of extensivity considerations and the use of suffi-
ciency conditions for dealing with the redundancies were given by Mahap-
atra, Datta and Mukherjee (1999), who also presented several applications
demonstrating the efficacy of the approach.

Another version of SS-CC is based upon Brillouin–Wigner PT (subsection
2.4.2). As pointed out there, the main disadvantage of BWPT is that its
energy is not extensive, because its equations retain a dependence on the ex-
act energy Eα (as does a truncated-CI calculation). However, unlike RSPT,
it does not have renormalization terms and one can derive therefore quite
straightforwardly the relevant equations for BWCC. These equations for SS-
CC were presented by Hubač, Pittner and Čárksy (2000) and by Pittner,
Čársky and Hubač (2002). The equations that determine the amplitudes
have the form

Eα〈Φab...
ij... (β)|eT̂ β |Φβ〉 − 〈Φab...

ij... (β)|Ĥ|eT̂ β |Φβ〉 = 0 (for all β). (14.48)

Hence, they are coupled only through Eα, making them virtually the same
as the SRCC equations for each β once the contributions from the other
active-orbital determinants are excluded from the β-equation. However, the
lack of extensivity defeats the purpose of a CC theory. To account for this
deficiency in an approximate manner, several a posteriori corrections for
restoring the extensivity have been developed, as well as corrections to the
iterative procedures. Nevertheless, this approach would appear to be inferior
to the SS-CC approach of Mukherjee and co-workers.

Many of the currently applicable MRCC methods have been compared
with high-level single-reference CC for several prototype multireference prob-
lems in a detailed paper by Evangelista, Allen and Schaefer (2006); also con-
sidered have been the insertion of Be into H2 (Purvis, Shepard, Brown et al.
1983), the H4, P4 and H8 quasidegenerate systems (Jankowski and Paldus
1980) and cyclobutadiene and methylene (Balková and Bartlett 1994, 1995).
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14.4 Fock-space valence-universal MRCC

14.4.1 The Fock-space approach

The Hilbert-space state-universal approach treats several states with the
same number of electrons and can directly compute excitation energies (as
shown in Table 14.1). A Fock space (Kutzelnigg 1982, 1984, Kutzelnigg and
Koch 1983), which is the union of Hilbert spaces for a range of numbers of
electrons, such as n = 0, 1, 2, . . . , nmax, can deal with a set of electronic states
with different numbers of valence electrons. This approach refers all equa-
tions to a single Fermi vacuum and uses a single, valence-universal, wave
operator for all states. It finds its major applications in the determination of
energy differences, such as ionization potentials and electron affinities as well
as electronic-state excitation energies. Examples of the type of quasidegen-
eracy it can address include complicated open-shell atoms, for which many
multiplets lie close in energy.

The Fock-space approach starts formally with the same Bloch equations
as used in Hilbert-space methods, except that the meaning of the model
functions and their projectors has to be extended to accommodate different
numbers of electrons. The classification of the one-electron states is the
same as in the Hose–Kaldor approach, Fig. 8.8, repeated here as Fig. 14.1 to
introduce an extended notation. The model space is regarded as consisting
of different sectors. The projector P̂ onto the model space is composed of

...
}

inactive holes

(m,n, . . .)

}
holes

(i, j, . . .)

...

... }
}

active holes
(u, v, . . .)

Fermi level

active particles
(x, y, . . .)

...
}

inactive particles

(e, f, . . .)

}
particles

(a, b, . . .){
active space

Fig. 14.1. Notation for the one-electron states in Fock-space MRCC.
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different sector projectors P̂ (p,h) producing p active particles and h active
holes in the common Fermi vacuum (see Fig. 14.1). The simplest sector
projector is

P̂ (0,0) = |0〉〈0| , (14.49)

which projects onto the Fermi vacuum. The P̂ (1,0) projector produces model-
space determinants |Φx〉 = x̂†|0〉 for all active particle labels x, for (n + 1)-
electron states:

P̂ (1,0) =
∑

x

x̂†|0〉〈0|x̂ =
∑

x

|Φx〉〈Φx| . (14.50)

Similarly, the P̂ (0,1) projector removes one active orbital (creates an active
hole) to generate (n−1)-electron states |Φu〉 = û|0〉 for all active hole labels
u, which is useful in the treatment of ionization potentials:

P̂ (0,1) =
∑

u

û|0〉〈0|û† =
∑

u

|Φu〉〈Φu| . (14.51)

The P̂ (1,1) projector creates all possible single excitations from active holes
to active particles,

P̂ (1,1) =
∑
xu

x̂†û|0〉〈0|û†x̂ =
∑
xu

|Φx
u〉〈Φx

u| . (14.52)

This sector projector is useful for the treatment of states dominated by single
excitations from the Fermi vacuum. For states with strong double-excitation
components we also need the P̂ (2,2) projector,

P̂ (2,2) = 1
4

∑
xyuv

x̂†ûŷ†v̂|0〉〈0|v̂†ŷû†x̂ = 1
4

∑
xyuv

|Φxy
uv〉〈Φxy

uv| . (14.53)

In a similar manner, the P̂ (1,2) projector,

P̂ (1,2) = 1
2

∑
xuv

x̂†ûv̂|0〉〈0|v̂†û†x̂ = 1
2

∑
xuv

|Φx
uv〉〈Φx

uv| , (14.54)

corresponds to shake-up effects in photoelectron spectroscopy. Other sectors
have a role in Auger processes etc.

The total model-space projector P̂ is the sum of the sector projectors,

P̂ =
np∑

k=0

nh∑
l=0

P̂ (k,l) , (14.55)
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where np and nh are the numbers of particle and hole states, respectively, in
the active space. For the projector onto the complementary space for each
sector we have

Q̂(p,h) = 1 − P̂ (p,h) , (14.56)

which is restricted to terms with the same number of electrons as P̂ (p,h), in-
cluding model determinants belonging to sectors other than P̂ (p,h) and includ-
ing |0〉 for Q̂(k,k) projectors. In complete-model-space (CMS) calculations,
|0〉 cannot contribute because no connected diagrams can be constructed
with it in the Bloch equations (Pal, Rittby, Bartlett et al. 1988). For in-
complete model spaces (IMSs), |0〉 may contribute to Ω and to Ĥeff, so that
intermediate normalization is no longer valid (Mukherjee 1986, Chaudhuri,
Sinha and Mukherjee 1989). Unlike the P̂ (p,h) projectors, which consist of
mutually exclusive sets, different Q̂(p,h) projectors with the same number of
electrons have most terms in common.

Partitioning the model-space determinants by their numbers of active par-
ticles and holes leads to a partitioning of the effective Hamiltonian:

P̂ ĤeffP̂ =P (0,0)HP (0,0) + P̂ (0,1)ĤeffP̂ (0,1)

+ P̂ (1,0)ĤeffP̂ (1,0) + P̂ (1,1)ĤeffP̂ (1,1) + · · · . (14.57)

The first term on the right describes the vacuum-sector contribution, corre-
sponding to single-reference CC, and is obtained as

P̂ (0,0)ĤeffP̂ (0,0) = P̂ (0,0)ĤeT̂ P̂ (0,0)

= P̂ (0,0)eT̂ e−T̂ ĤeT̂ P̂ (0,0) = P̂ (0,0)HP̂ (0,0), (14.58)

because P̂ (0,0)eT̂ = P̂ (0,0)(1 + T̂ + · · · ) = P̂ (0,0), since T̂ is an excitation
operator. Once the correlated wave function for the (0, 1) sector has been
evaluated, the second term of (14.57) provides the ionization energies. The
third term provides electron affinities, while the fourth term determines
electronic excitation energies.

14.4.2 The valence-universal wave operator

The correlated wave function is also constructed in sectors, each based on
the corresponding sector of the model space, through an exponential wave
operator Ω:

Ψ(p,h)P̂ (p,h) = ΩP̂ (p.h) . (14.59)
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For the (0,0) sector this process simply reduces to the usual single-reference
CC solution,

Ψ(0,0)P̂ (0,0) = eT̂ P̂ (0,0) , (14.60)

but a more general treatment is needed for the other sectors. To proceed,
we express the wave operator in terms of an auxiliary operator S̃ (Lindgren
1978, Sinha, Mukhopadhyay and Mukherjee 1986):

Ω = {eS̃} , (14.61)

where the braces indicate normal order. This operator is also partitioned
by sectors of Fock space,

S̃ = Ŝ(0,0) + Ŝ(1,0) + Ŝ(0,1) + Ŝ(1,1) + · · · + Ŝ(np,nh) , (14.62)

with

Ŝ(0,0) = T̂ . (14.63)

We also define the partial sums

S̃(p,h) =
p∑

k=0

h∑
l=0

Ŝ(k,l) (p ≤ np, h ≤ nh) , (14.64)

∆S̃ = S̃ − Ŝ(0,0) , ∆S̃(p,h) = S̃(p,h) − Ŝ(0,0) . (14.65)

The components of S̃ operate on model determinants. When operating
on a determinant in the P̂ (p,h) sector they generate determinants belonging
to Q̂(p,h); thus the only nonvanishing matrix elements of S̃ components are
of the form 〈Φ∗(p,h)

I |Ŝ(k,l)|Φ(p,h)
α 〉, with k ≤ p, l ≤ h, and furnish the s

amplitudes. Here Φ∗(p,h)
I and Φ(p,h)

α are determinants belonging to Q̂(p,h) and
P̂ (p,h), respectively. Usually Ŝ(p,h) operates on a model determinant in the
P̂ (p,h) sector, although it can produce a nonvanishing result when operating
on any model determinant that has at least p occupied active particle states
and at least h unoccupied active hole states. The Ŝ(0,0) operator operates
on |0〉 and provides the usual definition of the t amplitudes of the single-
reference T̂ operator. The objective of the valence-universal (VU) treatment
is to add the excitation amplitudes that can arise with the multidimensional
model space and that can be used to correlate the new states available with
this model space.

Each model determinant in the P̂ (1,0) space has one more electron (active
particle) than |0〉, and new terms are needed to provide correlation effects for
this added electron. This task is accomplished by the new Ŝ(1,0) operator,
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which excites the active particle produced by P̂ (1,0) to an inactive particle
state, possibly accompanied by additional excitations. Using the designation
of Fig. 14.1,

Ŝ
(1,0)
1 P̂ (1,0) =

∑
ex

se
x{ê†x̂}P̂ (1,0) , (14.66)

Ŝ
(1,0)
2 P̂ (1,0) = 1

2

∑
ixab

sab
xi{â†b̂†îx̂}P̂ (1,0) (14.67)

etc. The excitation due to Ŝ
(1,0)
1 has to be of the form x → e (active particle

to inactive particle). An x → y excitation would result in a model deter-
minant belonging to P̂ (1,0) and is excluded. For Ŝ

(1,0)
2 the requirements are

more relaxed: any x → a excitation may be accompanied by any i → b

excitation. A diagrammatic representation of Ŝ(1,0) and other Ŝ operators
is shown in Table 14.2. The thick bars in this figure represent the corre-
sponding Ŝ operators and have the value of the corresponding s amplitude.
It is easy to see that Ŝ(0,1) will be of the same form as Ŝ(1,0), except that
û† will replace x̂, because it can fill the vacant hole state created by P̂ (0,1)

while m̂, ĵ replace ê†, b̂†:

Ŝ
(0,1)
1 P̂ (0,1) =

∑
mu

su
m{û†m̂}P̂ (0,1) , (14.68)

Ŝ
(0,1)
2 P̂ (0,1) = 1

2

∑
ijau

sua
ij {û†â†ĵ î}P̂ (0,1) (14.69)

etc. The Ŝ(1,1) operator is given by

Ŝ
(1,1)
1 P̂ (1,1) =

∑
ux

su
x{û†x̂}P̂ (1,1) , (14.70)

Ŝ
(1,1)
2 P̂ (1,1) =

∑
aiux

′
sau
xi {â†û†îx̂}P̂ (1,1) . (14.71)

The prime on the summation sign in the expression involving the Ŝ
(1,1)
2

operator indicates that the a and i labels cannot both refer to active or-
bitals at the same time (if they did then the resulting state would belong to
P̂ (1,1)). Operators for any other sector of Fock space can be diagrammed as
in Fig. 14.2. Our notation for the s amplitudes does not specify the sector of
Ŝ to which they belong, because that information is evident from the type
of subscripts and superscripts on the amplitude symbol.

The Ŝ
(1,1)
1 operator contains only active lines and is a de-excitation opera-

tor taking the |Φu
x〉 model function, generated by P̂ (1,1), back to the vacuum

state |0〉. Such terms do not contribute at all for complete model spaces
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i a

Ŝ
(0,0)
1

i a j b

Ŝ
(0,0)
2

Ŝ
(0,0)
1 = T̂1 =

∑
ia tai {â†î}

Ŝ
(0,0)
2 = T̂2 = 1

2

∑
ijab tab

ij {â†b̂†ĵ î}

x

e

Ŝ
(1,0)
1

x

a i b

Ŝ
(1,0)
2

Ŝ
(1,0)
1 =

∑
ex se

x{ê†x̂}

Ŝ
(1,0)
2 = 1

2

∑
ixab sab

xi{â†b̂†îx̂}

u

m

Ŝ
(0,1)
1

u

i j a

Ŝ
(0,1)
2

Ŝ
(0,1)
1 =

∑
mu su

m{û†m̂}

Ŝ
(0,1)
2 = 1

2

∑
ijau sua

ij {û†â†ĵ î}

x u

Ŝ
(1,1)
1

x u

a i

Ŝ
(1,1)
2

Ŝ
(1,1)
1 =

∑
ux su

x{û†x̂}

Ŝ
(1,1)
2 =

∑′
aiux sau

xi {â†û†îx̂}

Fig. 14.2. Diagrammatic representation and algebraic expressions for the Ŝ(0,0),
Ŝ(1,0), Ŝ(0,1) and Ŝ(1,1) operators at the CCSD level. The heavy bar represents the
Ŝ operator, and has the value of the corresponding s amplitude. In the definition
of Ŝ

(1,1)
2 the prime on the summation sign indicates exclusion of the case in which

both upper labels (a and i) refer to active orbitals (see (14.68)–(14.71)).

(CMSs), and they do not contribute to the evaluation of excitation ener-
gies in important special cases of incomplete model spaces (IMSs) (Sinha,
Mukhopadhyay and Mukherjee 1986, Meissner and Bartlett 1991), though
they can contribute to the Fock-space wave function. This property applies,
in particular, to MRCCSD calculations, in which P̂ (1,1) is the highest sector
and defines the model space. Model spaces comprising complete sectors are
called quasicomplete.

A critical feature of the VU approach is the need to insure normal or-
dering in products of S̃ operators, such as those arising from the expansion
of the exponential eS̃ , as indicated by the braces in the exponential Ansatz
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y

a

z

x

u

i

D1

+
y

a

z

x

u

i

D2

=

y

a

z

x

u

i

×

{ }
Fig. 14.3. Illustration of the factorization of disconnected diagrams in the open-
shell case (Lindgren and Morrison 1986). The braces on the right-hand side of the
equation denote normal order.

ΩP̂ = {eS̃}P̂ , (14.61). Normal ordering of the Hamiltonian and of the cluster
operators T̂1, T̂2, . . . and evaluation of their contractions via the generalized
Wick’s theorem have been used throughout this book. Normal ordering is
easily imposed in the single-reference theory. In particular, the T̂ operators
and their products are always in normal order because they consist of oper-
ators (for particle creation and hole annihilation) all of the same kind with
respect to normal ordering, and therefore the exponential eT̂ is also in nor-
mal order. But the products of S̃ operators in VU theory do not have this
property and require explicit normal ordering of the exponential in (14.61).

A consequence of this situation is that the factorization of sums of differ-
ent time orderings of disconnected diagrams, which is trivial in the single-
reference theory, as shown for example in (9.97) and (9.101), requires explicit
product normal ordering in VU theory (Lindgren 1978). As an example we
examine the factorization shown in Fig. 14.3.

As is the case for T̂ operators, in first order the S̃ operators can be rep-
resented by the one-body and two-body Hamiltonian operators of MBPT
and QDPT theory. In fact, except for the reversed direction of two of the
lines, the disconnected diagrams in Fig. 14.3 are equivalent, in first order,
to diagrams 56 and 57 of Fig. 8.5. Such first-order approximations do not
need explicit normal ordering, but going beyond first order introduces the
requirement for product normal order.

The disconnected diagram D1, interpreted as a single diagram, has the
value

D1 =
sa
ys

xu
zi

εa
yε

axu
yzi

{â†x̂†û†îẑŷ} . (14.72)
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(For the determination of the denominators see Section 8.5.) Reversing the
time order gives diagram D2, with value

D2 =
sa
ys

xu
zi

εxu
zi εaxu

yzi

{â†x̂†û†îẑŷ} . (14.73)

Using the factorization theorem and adding the two diagrams gives a fac-
tored denominator product, eliminating the six-index denominator factor:

D1 + D2 =
sa
ys

xu
zi

εa
yε

xu
zi

{â†x̂†û†îẑŷ} . (14.74)

However, the r.h.s. of the equation in Fig. 14.3 is a product of two diagrams
and, disregarding the braces around it for now, its value is

sa
y

εa
y

{â†ŷ} × sxu
zi

εxu
zi

{x̂†û†îẑ} =
sa
ys

xu
zi

εa
yε

xu
zi

{â†ŷ}{x̂†û†îẑ} . (14.75)

The product of creation and annihilation operators in this equation is not
in normal order, as seen by the fact that contraction is possible between ŷ

and x̂†. Only by imposing product normal order (indicated by the braces in
Fig. 14.3),

{{â†ŷ}{x̂†û†îẑ}} = {â†x̂†û†îẑŷ} , (14.76)

do we get the two sides of the equation in Fig. 14.3 to agree.
Such problems cannot arise in a closed-shell case involving products of

T̂ operators, since all such products are automatically in normal order and
all creation and annihilation operators anticommute. In the multireference
case, however, the active orbital operators do not anticommute, and cannot
simply be reordered, unless they are inside a single normal product. The
correct result is restored by imposing normal order explicitly, as is done on
the r.h.s. of Fig. 14.3. Lindgren (1978) offered this approach as a simple res-
olution of this problem, showing that the correct products will be obtained
in a Fock-space theory once Ω = {eS̃} is product normal ordered.

A useful consequence of product normal ordering is that there can be no
contractions among products of S̃ operators, even though these operators
may have open active hole lines that could have been contracted in the
absence of normal ordering.

Several simplifications are possible in expressions containing the VU wave
operator {eS̃}P̂ . First, consider the (0, 1) sector, which involves a model
space of determinants with one active hole vacant. While Ŝ(0,1)P̂ (0,1) is
associated with s amplitudes, we have (Ŝ(0,1))2P̂ (0,1) = 0 since there is
only one vacant active hole available for the two Ŝ(0,1) operators. Similarly,
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(Ŝ(1,1))2P̂ (1,1) = 0 and in general (Ŝ(p,h))2P̂ (p,h) = 0. However, a nonzero
result can be obtained for products such as Ŝ(0,1)Ŝ(1,0)P̂ (1,1). Thus the VU
wave operator, while formally an exponential, reduces to a linear form in
the (0, 1) and (1, 0) sectors and only has nonlinear terms involving products
of s amplitudes in higher sectors. As we shall see presently, the amplitudes
in such a product derive from sectors below the sector of interest.

Another key simplification derives from the observation that terms like
Ŝ(1,1)P̂ (1,0) and Ŝ(1,1)P̂ (0,1) vanish and, in general, Ŝ(k,l)P̂ (i,j) = 0 if k > i

and/or l > j. A consequence of this property is that the expansion of the
VU operator {e∆S̃}P̂ (p,h) has to terminate. In particular, when operating
on P̂ (1,1) there is no contribution from Ŝ(2,0), Ŝ(2,1), Ŝ(0,2), Ŝ(1,2) or Ŝ(2,2).
As a result,

∆S̃P̂ (1,1) =
(
Ŝ(1,0) + Ŝ(0,1) + Ŝ(1,1)

)
P̂ (1,1) , (14.77)

and

{e∆S̃}P̂ (1,1) =
(
Ŝ(1,0) + Ŝ(0,1) + Ŝ(1,1)

+ 1
2{Ŝ

(0,1)Ŝ(1,0)} + 1
2{Ŝ

(1,0)Ŝ(0,1)}
)
P̂ (1,1) . (14.78)

14.4.3 The Fock-space Bloch equations

Since Ŝ(0,0) = T̂ , the VU wave operator can be factored in the form

ΩP̂ = eT̂ {e∆S̃}P̂ . (14.79)

Our remaining objective is to derive the Fock-space VU equations, which
will allow us to determine the amplitudes of ∆S̃.

Substituting (14.79) in the Bloch equation (14.14) for the (p, h) sector,
we get

ĤeT̂ {e∆S̃}P̂ (p,h) = eT̃ {e∆S̃}P̂ (p,h)ĤeffP̂ (p,h) . (14.80)

Left-multiplying by e−T̂ gives

e−T̂ ĤeT̂ {e∆S̃}P̂ (p,h) = {e∆S̃}P̂ (p,h)ĤeffP̂ (p,h) (14.81)

or

H{e∆S̃}P̂ (p,h) = {e∆S̃}P̂ (p,h)ĤeffP̂ (p,h) . (14.82)
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Now projecting by P̂ (p,h), and noting that P̂ (p,h){e∆S̃}P̂ (p,h) = P̂ (p,h){1 +
∆S̃ + · · · }P̂ (p,h) = P̂ (p,h) because P̂ (p,h)∆S̃ = 0, we get an equation for the
sectors of Ĥeff:

Ĥeff(p,h) = P̂ (p,h)ĤeffP̂ (p,h) = P̂ (p,h)H{e∆S̃}P̂ (p,h) . (14.83)

Finally, projection of (14.82) by Q̂(p,h) provides the amplitude equations,

Q̂(p,h)H{e∆S̃}P̂ (p,h) = Q̂(p,h){e∆S̃}Ĥeff(p,h) . (14.84)

The simplest example is provided by the equations for the (0, 1) sector,

Ĥeff(0,1) = P̂ (0,1)H{1 + Ŝ(0.1)}P̂ (0,1) , (14.85)

Q̂(0,1)
[
H{1 + Ŝ(0,1)}P̂ (0,1) − {1 + Ŝ(0,1)}Ĥeff(0,1)

]
= 0 . (14.86)

Using the standard diagram-generation techniques, the VU amplitude
equations and the associated Ĥeff can be diagrammed as shown in skele-
ton form in Figs. 14.4–14.6 for VU-CCSD. As in Chapter 8, short bars
across a line indicate limitation to active orbitals. The main difference from
the single-reference theory is the appearance of “folded” diagrams, from the
r.h.s. of the equations, that depend upon Ĥeff. Such diagrams are familiar
from MR-MBPT, Chapter 8. The energies for each sector are obtained by
diagonalizing the Heff matrix for the corresponding sector.

As can be seen from Figs. 14.5 and 14.6, solving the equations for Ŝ(1,1)

requires knowledge of the Ŝ(1,0) and Ŝ(0,1) amplitudes. This is a general
feature of the VU equations: solution of the equations for Ŝ(p,h) requires the
prior solution of the equations for Ŝ(k,l) for all k ≤ p and all l ≤ h (obviously
not including k = p and l = h simultaneously). This requirement for the
hierarchical solution for all sectors of Fock space lower than the sector of
interest has been called the “subsystem embedding condition” (Haque and
Mukherjee 1984, Chaudhuri, Mukhopadhyay and Mukherjee 1989).

An alternative demonstration of the subsystem embedding conditions can
be obtained by comparing the number of amplitudes to be determined by
the equations for each sector with the number of such equations. Consid-
ering first the (0, 1) sector, which requires a model space of one-active-hole
determinants, the number of such determinants is nh, the number of active
hole states. For an MRCCSD calculation we need to consider all single and
double excitations from these model determinants, which requires Ŝ

(0,1)
1 and

Ŝ
(0,1)
2 . For Ŝ

(0,1)
1 the single-excitation amplitudes are su

m (see Fig. 14.2),
and their number is nhn

′
h, where n′

h is the number of inactive hole states.
The various Ŝ

(0,1)
1 equations (Fig, 14.4(A)) are distinguished by two labels,
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(A) + + + − = 0 ,

(B) + + + + − = 0 ,

(C) = + + + .

Fig. 14.4. Diagrammatic representation of the VU-CCSD equations for the (1, 0)
and (0, 1) sectors in skeleton form; (A) is the equation for Ŝ1, (B) is for Ŝ2 and
(C) is for the one-electron part of Ĥeff (represented by the rectangle).

those for the initial active hole line (e.g. u) and the final inactive hole line
(m). (The internal lines are summed over and have dummy summation
indices.) The number of these equations is thus nhn

′
h, the same as the num-

ber of amplitudes to be determined, allowing unique determination of all
the amplitudes. Similarly, the number of possible amplitudes sub

ij for Ŝ
(0,1)
2

is 1
2nhn

′
p(n

′
h)

2, equal to the number of Ŝ
(0,1)
2 equations (Fig. 14.4(B)). Ob-

viously, a similar result will be obtained for the Ŝ(1,0) operator except that
the corresponding numbers will be npn

′
p and 1

2npn
′
h(n

′
p)

2, respectively.
This situation is to be contrasted with the case of Ŝ(1,1). For VU-CCSD

the relevant operators are Ŝ
(1,1)
1 and Ŝ

(1,1)
2 but, as can be seen from Fig. 14.2,

Ŝ
(1,1)
1 is not needed and we have enough equations to determine Ŝ

(1,1)
2 .

Howover, we can see from Figs. 14.5 and 14.6 that we also need the am-
plitudes for Ŝ

(1,0)
1 and Ŝ

(0,1)
1 and therefore cannot solve the (1, 1) sector

independently without first solving the lower (1, 0) and (0, 1) sectors, as
specified by the subsystem embedding condition.

The equations and diagrams given here are appropriate for the CMS case,
but most also apply to a truncated MRCCSD calculation with (1, 1) as the
top-level sector. In this latter case the Ŝ

(1,1)
1 operator contributes to Ω and

thus to the wave function, where it introduces a |0〉 contribution, negating
intermediate normalization. But there is no contribution to Ĥeff and thus
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+ + + + +

+ + + +

+ − − − − = 0 .

Fig. 14.5. Diagrammatic representation in skeletal form of the VU-CCSD equation
for Ŝ

(1,1)
2 . The two-electron part of Ĥeff is shown in Fig. 14.6.

to the energy. Therefore, for energy calculations only, the contribution of
Ŝ

(1,1)
1 and the lack of intermediate normalization can be ignored. If the

wave function is also of interest, the Ŝ
(1,1)
1 operator can be calculated from

the corresponding Bloch equation, shown diagrammatically in Fig. 14.7. Its
contribution to the wave function is given by

(x) (u) =
∑
ux

txusu
x|0〉 . (14.87)

The IMS case imposes consistency requirements on the selection of the
model states for the various sectors. Once the model states have been speci-
fied for the top sector, each lower sector must include all model states having
as orbital indices all allowed subsets of the orbital indices of the selected
model states of the sectors above it.

The Ŝ(1,1) operator can be used to demonstrate another aspect of the VU
formalism. It is possible to have the unusual situation in which, after an ac-
tive hole state has become unoccupied by P̂ (1,1), it can be reoccupied by the
next operator. Consider, for example, the following instance of the second
and fourth diagrams of Fig. 14.5, in which the second diagram includes an
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= + + +

+ + + +

+ + + .

Fig. 14.6. Diagrammatic representation in skeletal form of the two-electron part
of Ĥeff.

− − − = 0 .

Fig. 14.7. Diagrammatic representation of the VU-CCSD equation for Ŝ
(1,1)
1 .

emptying and reoccupation of the active hole state u at the internal hole line
(no other active hole label can replace the u on this line, although inactive
hole lines would also produce valid contributions):

x

(b)

a

u

i

+

x

(b)

a

u

u

i

.

Both diagrams have the same initial and final state and have the matrix
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element χaubi of H (see Eq. 10.70) as a common factor. The lower parts of
the two diagrams contribute the sum su

x + sbu
xu. The second amplitude in

this sum is called a spectator amplitude. If we were to go beyond VU-CCSD
and include Ŝ

(1,2)
3 we would also have sbuv

xuv as a spectator amplitude, with
similar contributions at higher levels.

The required presence of these spectator terms in the VU theory limits the
orbital relaxation found naturally in an FS calculation in comparison with a
model that benefits fully from the presence of an exponential operator eT̂1 ,
because the full power of the exponential is not there. An illustration would
be the poor accuracy of core-ionization states, where such effects are known
to be quite important. To improve upon the accuracy, selective infinite
summations of spectator terms have been recommended and, since they are
fundamentally simple, such summations can in fact be accomplished (Jana,
Bandyopadhyay and Mukherjee 1999).

14.4.4 Relationship to EOM-CC

Another interesting aspect is the similarity of VU-CC to EOM-CC
(Chapter 13). Consider an ionized state dominated by the removal of an
electron from hole state m. The IP-EOM-CC Ansatz for this state is

|Ψm〉 = R̂meT̂ |0〉 = eT̂ R̂m|0〉 , (14.88)

R̂m =
∑

i

riî + 1
2

∑
ija

ra
ij{â†ĵ î} + · · · . (14.89)

The dominant terms in (14.89) identify the hole state m as most strongly
involved in the ionization. The second form in (14.88) takes advantage of
the commutation of T̂ and R̂m. While operationally R̂m cannot be deter-
mined before T̂ , the two forms of the Ansatz in (14.88) allow two different
interpretations of the result. In the first, eT̂ |0〉 creates a correlated ground
state and then R̂m removes an electron from this CC state and introduces
the correlation changes due to ionization. In the second, R̂m removes an
electron from the vacuum state and generates a CI-like expansion for the re-
sulting ionized state and then eT̂ introduces ground-state correlation terms
that, together with R̂m, result in the correct description of the ionized-state
correlation.

In the VU-CC case, the Ansatz is

|Ψm〉 = {eŜ(0,1)}|Φm〉 = (1 + Ŝ(0,1))|Φm〉 , (14.90)
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where |Φm〉 = m̂|0〉 is a one-vacant-hole-state model-space determinant and
the effective Hamiltonian matrix is

Heff(0,1) = 〈Φ(0,1)|Ĥeff|Φ(0,1)〉 = 〈Φ(0,1)|H(1 + Ŝ(0,1))|Φ(0,1)〉 , (14.91)

because (Ŝ(0,1))2P̂ (0,1) = 0. Here |Φ(0,1)〉 is a row vector of the one-vacant-
active-hole determinant and 〈Φ(0,1)| is its adjoint column vector. The main
difference between the matrix (14.91) and the IP-EOM-CCSD matrix im-
plicit in (13.25) is that the latter has a dimension of one-hole single and
double excitations while the former has the smaller dimension nh of just
the one-vacant-active-hole determinants. Thus we expect to have a matrix
partitioning relating the two matrices.

Using (13.25) and noting that

〈Φi|riî|0〉 = ri , 〈Φa
ij |ra

ij{â†ĵ î}|0〉 = ra
ij , (14.92)

the IP-EOM-CCSD eigenvalue equation for hole state m can be written in
partitioned form as(

〈Φ(0,1)|H|Φ(0,1)〉 〈Φ(0,1)|H|Φ(1,2)〉
〈Φ(1,2)|H|Φ(0,1)〉 〈Φ(1,2)|H|Φ(1,2)〉

)
C

(
r(0,1)

r(1,2)

)
=

(
r(0,1)

r(1,2)

)
ωm , (14.93)

where ωm is the ionization energy of hole state m. Normally, if we were
to use sector designators such as (0, 1) and (1, 2) in EOM-CC then they
would refer to all orbitals since there is no separation between active and
inactive orbitals in this model. Specifically, |Φ(0,1)〉 and |Φ(1,2)〉 are row
vectors consisting of all determinants of types Φi and Φa

ij , respectively; to
bring out the analogy between EOM-CC and VU-CC, we may designate a
subset of orbitals as active and restrict the sector definitions to this subset.
Also, r(0,1) and r(1,2) are column vectors consisting of elements of types ri

and ra
ij , respectively.

Separating the equation for rm gives∑
n

〈Φm|H|Φn〉rn +
∑
ija

〈Φm|H|Φa
ij〉ra

ij = rmωm ; (14.94)

now multiplying on the right by r−1
m we have

〈Φm|H|Φm〉 +
∑
n�=m

〈Φm|H|Φn〉rnr−1
m +

∑
ija

〈Φm|H|Φa
ij〉ra

ijr
−1
m = ωm. (14.95)

For the remaining equations we define the vectors

|Φ̃〉 = |Φ(0.1)′ Φ(1,2)〉 , (14.96)

r̃ =
(
r(0.1)′

r(1,2)

)
(14.97)
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and the adjoint column vector 〈Φ̃|. The prime on (0, 1) indicates the omis-
sion of Φm and rm. These equations now take the form

〈Φ̃|H|Φm〉 + 〈Φ̃|H|Φ̃〉r̃r−1
m = r̃ωmr−1

m . (14.98)

From (14.91), however,

〈Φm|Ĥeff|Φm〉 = 〈Φm|H(1 + Ŝ(0,1))|Φm〉 . (14.99)

Identifying 〈Φm|Ĥeff|Φm〉 with ωm (which it equals when Heff is digonalized)
and S(0,1) with 〈Φ̃|Ŝ(0,1)|Φ(0,1)〉 = r̃r−1

m , we regain the valence-universal Heff.
Furthermore, the VU amplitude equation (14.98) becomes

〈Φ̃|H|Φ(0,1)〉 + 〈Φ̃|H|Φ̃〉(S(0,1) − S(0,1)Heff) = 0 . (14.100)

With minor modifications we can identify any number of orbitals as ac-
tive, treating active hole states similarly to state m. It does not matter
which orbitals are actually active. Each principal ionization potential for
any orbital in IP-EOM-CC can be obtained and, unlike a true multirefer-
ence theory, expanding the number of active orbitals does not provide any
better an approximation. In the event that all orbitals are active, we also
have the simplification that there are no single excitation contributions to
the amplitude equations for Ŝ

(0,1)
2 .

14.5 Intermediate-Hamiltonian Fock-space MRCC

The intermediate Hamiltonian (IH) approach was introduced by Malrieu,
Durand and Daudey (1985) in order to overcome intruder-state problems
in perturbative and other methods. Its original primary application was
to quasidegenerate perturbation theory, but it was also used to provide
“dressings” for extensivity-corrected multireference configuration interac-
tion (Daudey, Heully and Malrieu 1993). Applications of this approach to
Fock-space multireference coupled-cluster theory mostly use a similarity-
transformation technique (Stolarczyk and Monkhorst 1985, Meissner and
Nooijen 1995, Meissner 1998, Meissner and Malinowski 2000). Here we
shall focus on the approach in Meissner (1998).

Intruder states are Q̂-space states with energies close to or within the
range of the energies of the model states. They are particularly common in
complete-model-space treatments, because such spaces tend to include high-
energy multiple-excitation model states that contribute little to the wave
function but are included merely for completeness. The intruder states tend
to be single (or very low) excitations into the lowest part of the inactive
particle space or from the highest part of the inactive hole space. Because
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they generate very small or negative energy denominators in perturbative
or iterative solution procedures, they often result in divergence or severe
convergence difficulties. Intruder states also tend to occur at regions of
avoided crossings, where they often cause discontinuities in potential-energy
curves and surfaces (Malrieu, Durand and Daudey 1985).

The intermediate-Hamiltonian approach overcomes intruder-state prob-
lems by interposing a buffer space between the model space and the rest of
the Q̂-space. The total space is divided into three subspaces (Fig. 14.8):

1. the main model space M , of dimension n, whose projector is P̂ (this
is the original model space of the problem). Its complement has the
projector Q̂;

2. the intermediate space M ′, of dimension n′ and projector P̂ ′, usually
consisting of a part of the original Q̂-space closest in energy to M

and including the states responsible for the intruder problems;

3. the rest of the Q̂-space, with projector Q̂I = Q̂ − P̂ ′.

The intermediate Hamiltonian Ĥ int operates in the augmented model space
MI = M ∪ M ′, the union of the main and intermediate spaces; MI has
dimension nI = n + n′ and projector P̂I = P̂ + P̂ ′, while the effective

P̂ ′{
}
}{

P̂

Q̂

P̂I

Q̂I

Fig. 14.8. Projectors for the various subspaces in the intermediate-Hamiltonian
approach.
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Hamiltonian Ĥeff is defined in the main model space M . We have

P̂ + Q̂ = P̂I + Q̂I = 1̂ . (14.101)

In the usual Fock-space MRCC the solution of the amplitude equations
provides an effective Hamiltonian Ĥeff, of dimension n, which can be di-
agonalized to produce n eigensolutions that are equal to a subset of the
eigensolutions of Ĥ. The intermediate Hamiltonian Ĥ int, of dimension nI ,
is defined on the P̂I -space, and n of its eigenvalues are required to be equal
to the corresponding eigenvalues of Ĥeff. The remaining nI − n eigenvalues
are essentially arbitrary. They may (but need not) be rough approximations
to the eigenvalues of Ĥ. Because no requirements are imposed on this extra
set of solutions, this procedure can be used to protect the main model space
from intruder states in the low-lying part of the Q̂-space.

Because of the arbitrariness of the extra solutions produced by Ĥ int, the
intermediate Hamiltonian and the equations determining it are not unique.
Different variants of the intermediate-Hamiltonian approach, using different
auxiliary conditions to define a unique Ĥ int, have been proposed and applied.
A particularly convenient and effective version of this approach when the
objective is limited to obtaining energies, without wave functions, is the
similarity-transformation method of Meissner (1998).

We first consider a general similarity-transformation treatment that is
analogous to the Fock-space MRCC approach of the previous section. We
note that the valence-universal wave operator is Ω = {eS̃} = eT̂ {e∆S̃} and
define a new operator X̂, such that

X̂ = {e∆S̃ − 1} , X̂ = Q̂X̂P̂ , (14.102)

and for which

X̂2 = 0 , eX̂ = 1 + X̂ , e−X̂ = 1 − X̂ . (14.103)

Next we introduce a similarity transformation of the CC-transformed Hamil-
tonian H = e−T̂ ĤeT̂ (Meissner 1998),

H̃ = e−X̂HeX̂ = (1 − X̂)H(1 + X̂) (14.104)

and require this transformation to satisfy the equation

Q̂(1 − X̂)H(1 + X̂)P̂ = 0 (14.105)

in successive sectors of Fock space, according to the subsystem embedding
condition. Writing this equation in the form

Q̂H(1 + X̂)P̂ − Q̂X̂P̂H(1 + X̂)P̂ = 0 (14.106)
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and noting that (14.83) for the FS effective Hamiltonian can be written as

P̂H(1 + X̂)P̂ = Ĥeff , (14.107)

we have

Q̂H(1 + X̂)P̂ − Q̂X̂P̂ ĤeffP̂ = 0 , (14.108)

which is equivalent to the Bloch equation (14.82).
Equation (14.105) is a quadratic equation in X̂ and thus has multiple solu-

tions. Also, this procedure suffers from the intruder-state problem. To over-
come these difficulties we introduce the intermediate-Hamiltonian approach
by splitting the transformation (14.104) into two successive transformations,
as follows:

H̃ = e−Ẑe−Ŷ HeŶ eẐ = (1 − Ẑ)(1 − Ŷ )H(1 + Ŷ )(1 + Ẑ) , (14.109)

where

Ŷ = Q̂IX̂ = Q̂I Ŷ P̂ , Ẑ = P̂ ′X̂ = P̂ ′ẐP̂ (14.110)

and

X̂ = Ŷ + Ẑ , (14.111)

1 + X̂ = (1 + Ŷ )(1 + Ẑ) , 1 − X̂ = (1 − Ẑ)(1 − Ŷ ) (14.112)

(the last line follows because Ŷ Ẑ = ẐŶ = 0).
For an IH-CCSD calculation the P̂ ′ subspace for the (1, 1) sector consists

of single excitations, while double excitations are put into the Q̂I -subspace.
Explicitly, noting (14.102) and (14.111), the Ẑ and Ŷ operators are given
by

Ẑ =
{
Ŝ

(1,0)
1 + Ŝ

(0,1)
1 + Ŝ

(1,0)
1 Ŝ

(0,1)
1 + Ŝ

(1,1)
2

}
P̂ (1,1) , (14.113)

Ŷ =
{
Ŝ

(1,0)
2 + Ŝ

(0,1)
2 + Ŝ

(1,0)
1 Ŝ

(0,1)
2 + Ŝ

(1,0)
2 Ŝ

(0,1)
1 + Ŝ

(1,0)
2 Ŝ

(0,1)
2

}
P̂ (1,1) (14.114)

(Bartlett and Musia�l 2007).
The intermediate-Hamiltonian treatment starts with a conventional CC

calculation for the Fermi-vacuum state (i.e. the (0,0) sector) and construc-
tion of the CC transformed Hamiltonian H. This step is followed by solution
of the (1,0) and (0,1) sectors, either by VU-CC, as described in Section 14.4,
or by EA-EOM and IP-EOM (Chapter 13). The principal eigenvalues ob-
tained by these two methods should be the same, as discussed in subsec-
tion 14.4.4, while the eigenvectors would differ in their normalization. This
procedure provides all the s amplitudes needed for the determination of Ŷ

using (14.114).
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Assuming that our objective is limited to obtaining energies, not wave
functions, we do not need to evaluate Ẑ because P̂I(1 − X̂)H(1 + X̂)P̂I

and P̂I(1− Ŷ )H(1+ Ŷ )P̂I are related by a similarity transformation via eẐ ,
as seen in (14.109), and thus have the same eigenvalues. As a result, we
do not need to evaluate Ŝ

(1,1)
2 , the last term in (14.113), thus avoiding the

need to solve the (1,1) sector. The next step is then the evaluation of the
intermediate Hamiltonian

Ĥ int = P̂IĤ
intP̂I = P̂I(1 − Ŷ )H(1 + Ŷ )P̂I = P̂IH(1 + Ŷ )P̂I , (14.115)

which is analogous to (14.107) for the effective Hamiltonian. The diagonal-
ization of Ĥ int then provides the desired n eigenvalues, plus n′ additional
eigenvalues deriving from the contributions of the original buffer space P̂ ′

and likely to contain any intruder-state effects.
A diagrammatic representation of the intermediate Hamiltonian for IH-

CCSD, derived from (14.114), (14.115), is shown in Fig. 14.9 (Bartlett and
Musia�l 2007). The representation includes disconnected diagrams but ex-

Ĥ int = + + +

+ + + +

+ + + +

Fig. 14.9. Diagrammatic representation in skeletal form of the intermediate Hamil-
tonian for IH-FS-MRCCSD (Bartlett and Musia�l 2007). The initial and final states
in all diagrams are restricted to be in the P̂I -space.



14.5 Intermediate-Hamiltonian Fock-space MRCC 495

Table 14.2. Vertical excitation energies, in eV, for the N2, C2 and H2O
molecules and the neon atom calculated using the IH-CC and EOM-CC

methods. The full-CI values are given for comparisona

IH-CC EOM-CC

State FCIb CCSD CCSDT CCSD CCSDT

N2 (9, 4)c

1Πg 9.584 −0.333 0.028 0.081 0.009
1Σ−

u 10.329 −0.102 0.005 0.136 0.004
1∆u 10.718 −0.009 0.010 0.189 0.008
1Πu 13.608 0.312 0.162 0.401 0.053

C2 (8, 3)c

1Πu 1.385 0.017 −0.005 0.089 0.034
1Σ+

u 5.602 0.317 0.069 0.197 0.112

H2O (4, 4)c

1B1 7.447 0.095 −0.009 −0.072 −0.029
1A2 9.211 0.138 −0.015 −0.089 −0.033
1A1 9.874 0.111 −0.005 −0.068 −0.029

Ne (7, 4)c

1P 0 16.398 −0.245 −0.022 −0.240 −0.026
1D 18.213 −0.206 −0.004 −0.250 −0.028
1P 18.256 −0.220 0.000 −0.251 −0.028
1S 18.485 −0.309 −0.047 −0.237 −0.035

aMusia�l and Bartlett (2008). The IH-CC and EOM-CC values are deviations from
FCI (in eV). The inner-shell electrons are frozen.
bThe calculations of Christiansen, Koch, Jørgensen et al. (1996) for N2, C2 and
H2O, which include a description of the geometries and basis sets, and of Koch,
Christiansen, Jørgensen et al. (1995) for Ne.
cThe notation (m,n) indicates an active space of m spatial-orbital particles and n
holes (which equals 2m spinorbital particles and 2n holes).

tensivity is preserved because the disconnected terms cancel in the diago-
nalization process.

An extension of the intermediate-Hamiltonian treatment to the IH-CCSDT
case has been described by Musia�l and Bartlett (2008). They provide a num-
ber of sample applications at both the MRCCSD and MRCCSDT levels and
give comparisons with EOM-CC and the full-CI results. Their results are
shown here in Table 14.2.
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Hubač, I., 351, 352, 474, 504, 513, 514, 519
Hubbard, J., 1, 504
Huby, R., 41, 504
Hugenholtz, N. M., 1, 118, 165, 504
Hylleraas, E. A., 25, 504

Ivanov, S., 421, 497

Jana, D., 488, 504
Jankowski, K., 263, 429, 430, 474, 496, 505,

506
Janssen, C. L., 346, 505
Jayatilaka, D., 352, 505
Jeziorski, B., 227, 301, 465, 505, 514, 515
Jordan, P., 1, 505
Jørgensen, P., 361, 367, 419, 431, 444, 453,

456, 461, 495, 500, 505, 506, 508

Kaldor, U., 227, 504, 505
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Živkowič, T. P., 429, 430, 520



Subject index

A and B matrices, 392, 400–404, 425–426
complex case, 393, 402–404

annihilation operator, 55–67
pseudo-, 72

active holes, 476, 489
active particles, 476, 489
anticommutation relations, 57–59
antisymmetrized Goldstone diagrams (ASGs),

121–123
energy, third-order

canonical HF case, 133
non-HF case, 133

energy, fourth-order
single-excitation diagrams, 142
double-excitation diagrams, 142
triple-excitation diagrams, 143
quadruple-excitation diagrams, 144

QDPT level-shift operator
second-order, 206
third-order, 221

folded, 224
QDPT wave operator

second-order, 208, 209
wave function, second-order

canonical HF case, 137
non-HF case, 138

antisymmetrizer, 4
ASG, see antisymmetrized Goldstone

diagrams
atomic units, 2, 64
avoided crossings, 491

B-CC, see Brueckner-orbitals CC
Baker–Campbell–Hausdorff expansion, 293
basis set

complete, 387
complex, 402
derivative integrals, see derivative integrals
perturbed, 387, 390, 392, 394–399, 404–405

Bloch equation, 52, 186
generalized, 52, 186, 463–465

alternative forms, 464, 465
derivation, 187–188

in Fock-space MRCC, 483–488
matrix form, 189–191
normal-product form, 194–195
order-by-order expansion, 189
schematic representation, 198–203
secondary term, 200
with folded resolvent lines, 202

bond breaking, 185, 427, 429, 441, 447–448,
462

bonnes fonctions, 187, 464, 472
bracket insertion, see insertion
Brillouin theorem, 9, 132, 237

inapplicable to ROHF, 132, 300
Brillouin–Wigner perturbation theory

(BWPT), 33–34
non-extensivity, 34–36

Brueckner orbitals, 10, 413, 418–421
advantages, 420–421
conditions, 419
iterative process, 419–420
stationarity condition, 419

Brueckner-orbitals CC (B-CC), 421
broken-symmetry cases, 421

BWPT, see Brillouin–Wigner perturbation
theory

C-conditions, 466–467
CC, see coupled cluster
CCD (CC doubles), 163, 258–271, 342

algebraic derivation, 263–271
amplitude equations, 288–289

iterative solution, 290
configuration-space derivation, 258–263
diagrammatic derivation, 279–291
linearized, 263

CCSD (CC singles and doubles), 163, 299–308,
342, 343, 425

computational cost, 308
equations, 301
linearized, 375

role of T̂1, 300–301
role of the A and B matrices, 425

T̂1 equations, 304

524



Subject index 525

ASG diagrams, 302
generation of ASG diagrams, 303

T̂2 equations, 307

ASG diagrams for T̂1 contributions, 305

generation of ASG diagrams for T̂1

contributions, 306
CCS (CC singles), 442
CCSDT (CC singles, doubles and triples),

308–321, 342, 343
CCSD(T), 319–320, 342, 343
CCSD[T], 317–319
CCSDT-1, 163, 315–321, 342

computational cost, 316
iterative procedure, 316, 317

CCSDT-2, 320
computational cost, 321

CCSDT-3, 320–321
computational cost, 321

CCSDT-n, comparison of included terms,
321

computational considerations, 315–318
computational cost, 316–317
equations, 309
ΛCCSD(T), 426, 427

role of T̂3, 308–309

T̂1 equations, 310

ASG diagram for T̂3 contributions, 310

T̂2 equations, 311

ASG diagrams for T̂3 contributions, 310

T̂3 equations, 313
ASG diagrams, 312
perturbation-theory order of terms, 314

CCSDTQ, 321–328, 342, 343, 381
CCSDT(Qf), 343
CCSDT[Q], 342
CCSDTQ-1, 322–325, 342

computational cost, 325
CCSDTQ-2 approximation, 325
computational cost, 325
equations, 321–322
factorized quadruples (Qf) approximations,

325–328
ΛCCSDT(Qf) approximation, 427–428

T̂2 equations

ASG diagram for T̂4 contributions, 322

T̂3 equations, 322

ASG diagram for T̂4 contributions, 322

T̂4 equations
ASG diagram, 323

CCSDTQP, 342–344
CCSDTQPH, 343, 344
CI, see configuration interaction
CID (CI doubles), 13, 159, 163, 342
CIS (CI singles), 10
CISD (CI singles and doubles), 9, 159, 163,

342
quadratic, 301
with Davidson correction, 163

CISDT, 159, 342

CISDTQ, 159, 342
CISDTQP, 342, 471
cluster operators, 255–258

amplitudes, 255–258
diagrammatic representation, 273–275, 285
in state-universal MRCC, 465

relative importance of T̂n contributions,
308–309

CMS, see model space, complete
commutator

simplification, 293
vacuum expectation value, 101

computational results
C2 excitation energies by IH-CC and

EOM-CC, 495
C2 ionization potentials by IP-EOM-CC,

446, 447
CH+ electron affinities by EA-EOM-CC,

446, 448
CH+ excitation energies by EE-EOM-CC,

441–442
CH2 excitation energies by EE-EOM-CC,

443
CN electron affinity by GMBPT and CCSD,

417
comparison with experiment, limitations,

444
comparison with full CI, 340–346, 442–444,

447, 448, 495
advantages, 444

FH and H2O by CI, MBPT and CC, 342
H2O excitation energies by IH-CC and

EOM-CC, 495
H2O in 39-STO basis, 153–156, 159–164
H2O in SU-CC, 471
N2 dissociation with RHF and UHF

references, 343–344
N2 excitation energies by IH-CC and

EOM-CC, 495
N2 potential-energy curves, 345
Ne excitation energies by IH-CC and

EOM-CC, 495
using full-CI Hamiltonian matrix, 444

configuration interaction (CI), 9–10
extensivity correction

dressing, 490
quadruples, 162

full CI, 10, 159, 340–346, 430
multireference, 8, 490

MRCISD, 472
non-extensivity, 12, 161
quadratic CISD, 301
relationship to RSPT, 159–164

configuration state functions, 472
conjugate diagrams, 134, 135, 142, 416
connectivity conditions, see C-conditions
continued fractions, 185
contractions, 68–69

diagrammatic representation, 92–95
relative to Fermi vacuum, 74–75

core ionization, 488



526 Subject index

core states, 192, 193, 228
correlation energy, 8, 85, 131, 153

derivative, 396–405
imaginary component, 401

Coulomb integral, 7
Coulomb operator, 7, 76
coupled cluster, 251–430

CC effective Hamiltonian (H), 292
connected form, 294
diagrams and intermediates, 328–340
simplification, 293–294

CC energy functional (E), 366–367
as basis for noniterative approximations,

426–429
stationarity condition, 366–367

computational considerations, 411
diagrams

general form, 295
rules of interpretation, 296
systematic generation, 297–299

doubles model, 258

effective Hamiltonian incorporating T̂1 (H̃),
418–419

diagrammatic representation, 418–419
iterative process, 419

energy, 302
complex case, 401

energy derivative, 396–405
imaginary component, 401

equations, 258–328
characteristics, 254
complex solutions, 429
connected form, 292–295
nature of solutions, 429–430
number of solutions, 430
relationship of solutions to full CI, 429,

430
standard solution, 429
systematic derivation, 292–328

exponential Ansatz and extensivity, 254–255
foundations, 251–291
full CC, 430
history, 2
Λ-based noniterative approximations,

426–429
orthogonally spin-adapted, 410
relationship to MBPT, 272–279

factorization of disconnected diagrams,
275–279

relative importance of T̂n contributions,
308–309

role of single excitations, 300–301
wave function, 254–258
with arbitrary reference function, 411–414

coupled-cluster linear response, 431
coupled-perturbed Hartree–Fock (CPHF),

387–393
complex case, 402

CPHF, see coupled-perturbed Hartree–Fock
creation operator, 55–67

pseudo-, 72

Davidson correction, 161–163
DEA-EOM-CC, see equation-of-motion CC,

double electron attachment
degenerate perturbation theory, 186
denominator, see resolvent
density matrix, 352–361

diagrammatic representation, 355–361
energy weighted, 394
one-body, 352

diagrams for ph terms, 357
diagrams for pp terms, 358
MBPT diagrams, 360

relaxed, 386, 401, 426
response, see response density matrix
response treatment, 381–385
transition, 436
two-body, 353–355

density-functional theory, 413
derivative integrals, 391, 392, 396

avoiding transformation, 391, 395, 404–405
destruction operator, see annihilation operator
diagram summation techniques, 177–180
diagrammatic methods, 90–164

history, 1
diagrammatic notation, 90–129

CC, 273–275
CC effective Hamilton, 328
EOM-CC, 437
Λ operator, 368
QDPT, 195–198
reduced density matrix, 340, 355–361

DIP-EOM-CC, see equation-of-motion CC,
double ionization potentials

dipole moment, 362, 450
dipole operator, 436
dipole polarizability, 362, 450
dipole strength, 436, 461
direct CI, 472
disconnected clusters, 15
disconnected diagrams, 136, 137

E, see coupled cluster, CC energy functional
EA-EOM-CC, see equation-of-motion CC,

electron attachment
EE-EOM-CC, see equation-of-motion CC,

excitation energies
effective Hamiltonian

incorporating T̂1 (H̃), 418
of CC (H), 292

for model state α (Hα), 468

of QDPT and MRCC (Ĥeff), 51, 187, 188,
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